
Semantic Dependency Analysis Method for Japanese based on
Optimum Tree Search Algorithm

Hideki Hirakawa

Knowledge Media Laboratory, Corporate R&D Center, Toshiba Corp.
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582, Japan

Email: hideki.hirakawa@toshiba.co.jp, Tel: +81-44-549-2020, Fax: +81-44-520-1308
Keywords: Japanese sentence analysis, dependency analysis, optimum search

Abstract

There is combinatorial order of ambiguities in each level of natural language analysis, such as the
morphology, syntax, and semantic levels. Moreover, much of the linguistic knowledge in each level
is preference knowledge and has mutual interference. Deterministic processing is usually intro-
duced to avoid the combinatorial explosion. However, this restricts the ability of natural language
processing system because of the above-mentioned features of linguistic knowledge. This paper
describes a sentence analysis method which uniformly evaluates syntactic and semantic preference
knowledge, and shows an algorithm (based on the branch and bounding method) to search the op-
timum semantic tree from a semantic dependency graph which holds syntactic and semantic ambi-
guities in a Japanese sentence.

1. Introduction

One of the most serious problems in natural lan-
guage analysis is an ambiguity resolution in various
levels such as morphology, syntax, semantics and
pragmatics. In each analysis level, there exist a combi-
natorial number of interpretations of sentences. A
proper interpretation of a sentence should be selected
based on consideration of the following characteristics
of linguistic knowledge.

a. A majority of linguistic and semantic knowledge is
not restrictive knowledge but preference knowl-
edge.

b. There is interference between the different levels of
knowledge.

 In the course of sentence analysis, many possible in-
terpretations appear regarding choices of parts of
speech of words and choices of dependencies of words.
These possibilities are generated as hypotheses of some
kind in the analysis process.

The restrictive application of linguistic knowledge
causes the rejection of one or more interpretations and
the preferential application gives the preferential order
of the generated hypotheses. In general, Japanese word
connection conditions are restrictively applicable lin-

guistic knowledge, and semantic knowledge is preferably
applicable knowledge as shown in the preference seman-
tics [Wilks 75]. Linguistic knowledge recognized as re-
strictive knowledge sometimes has exceptions. For ex-
ample, cross dependency restriction is considered to be a
strong restriction in Japanese language, there are excep-
tions such as

watashi-ha sakana-wo Tokyo-ni tabe-ni itta.
(I) (fish) (Tokyo) (eat) (go)

Restrictive application of knowledge suppresses com-

binatorial explosions and improves process efficiency.
However, if preference knowledge is applied restrictively,
the system may fail to capture the correct interpretation of
a sentence.

The following example shows the interference be-
tween the different levels of knowledge, i.e. syntactic
knowledge and semantic knowledge.

S1. X-ha Y-ga ookii.
 X-PT Y-PT big
S2. Te-ha Taro-ga ookii.
 hands-PT Taro-PT big
S3. Taro-ga ookii te
 Taro-PT big hands

 In each of these examples, the upper sentence is a
Japanese written in alphabetic characters, and the lower
one shows the same sentence but content-words are
replaced with English correspondences. “PT” means a
particle in Japanese, which marks a case role. Here,
sentence pattern S1 has two readings corresponding to
(a) "X has big Y" and (b) "Y has big X". In S1, inter-
pretation (a) is preferable since particle "ha" often
marks the theme of a sentence. On the other hand, in
S2, interpretation (b) is preferable since syntactic pref-
erence caused by "ha" is defeated by semantic prefer-
ence caused by semantic relation (part-whole relation)
between hands and Taro (human). S3 shows a conflict
between preferences originated from syntactic structure
and semantic relation. This example shows the need for
proper treatment of different levels of preference
knowledge.
 In order to handle the above two characteristics, a.
and b., the following three functionalities are required.

1) Incorporating possible interpretations of every
analysis levels of a sentence efficiently into some
structure

2) Setting various kinds of preference values to inter-
pretations in the structure

3) Finding the optimum interpretations with respect to
preference values

Tomita [Tomita 87] and Barton [Barton 85] pro-
posed a method for packing the whole phrase struc-
tures for a sentence efficiently. In Constraint Depend-
ency Grammar (CDG), possible dependency structures
are maintained intentionally utilizing constraint matrix
and constraint propagation mechanism excludes inap-
propriate structures [Maruyama 90]. Hirakawa pro-
posed a data structure called a semantic dependency
graph for implementing the above three functionalities
for Japanese sentence analysis [Hirakawa 89a]. The
third functionality inherently requires combinatorial
order of computation. An efficient and practical algo-
rithm for managing this computational problem is re-
quired. In this paper, branch and bounding method
[Ibaraki 78] is adopted for obtaining the optimum in-
terpretation of a sentence [Hirakawa 89b]. Section 2
describes a semantic dependency graph and its con-
struction method. Section 3 shows an algorithm for
obtaining the optimum solution from a semantic de-
pendency graph. Section 4 and section 5 describes an

experiment concerning the algorithm and improvement
of implementation. Section 6 mentions related works.

2. Semantic dependency graph

2.1 Structure of semantic dependency graph
There are various kinds of ambiguities in Japanese

sentence analysis such as ambiguities in roles of words,
directions of dependency relations, semantic relations
between words, word references and so on. This paper
focuses on ambiguities on directions of dependency rela-
tions and their semantic interpretations.

A data structure called a semantic dependency graph
(or SED-graph) is introduced to represent word depend-
ency relations and their semantic interpretation. In this
graph, a node corresponds to a word in a sentence (parti-
cles are included). An arc connecting two nodes repre-
sents a possible dependency relation between them. An
arc name shows the semantic relation or the role of the
dependency relation. Each arc has a preference score
called a weight. Fig.1 shows a semantic dependency
graph for the Japanese sentence "watashi(I)-ha
anata(you)-ga suki(like)-desu". English words in curved
parentheses are translations of Japanese words.

The labels "ag" and "ob" represent the semantic rela-
tions "agent" and "object", respectively. Since Japanese
language has a restriction such that a dependent word is
located on the left hand side of its governor, a semantic
dependency graph is a directed acyclic graph (DAG). The
semantic structure of a sentence is defined as a
well-formed spanning tree on a semantic dependency
graph. This is called a semantic tree (SEM-tree) of a sen-
tence. The SED-graph in Fig.1 has four spanning trees.
Only two of them are well-formed tree, i.e., " watashi(I)
-ag-> suki-desu(like) <- ob- anata(you)" and "watashi(I)
-ob-> suki-desu(like) <-ag- anata(you)". Here, a
well-formed tree is a tree that does not violate the follow-
S

watashi-ha (I)

anata-ga (you)

suki-desu (like)

 ob
15

ag
 20

ag
30

ob

 15

ag: agent
ob: object

Fig.1 Semantic dependency graph for “watashi-ha
anata-ga suki-desu”

ing two restrictions.

r1. No two arcs cross in a tree (cross dependency)
r2. No two arcs in a tree occupy the same valence of a

predicate (multiple valence occupation)

Restriction r2 filters out two ill-formed trees " wa-
tashi(I) -ag-> suki-desu(like) <-ag- anata(you)" and "
watashi(I) -ob-> suki-desu(like) <-ob- anata(you)" on
the SED-graph in Fig.1.

The weight of a SEM-tree is the sum-total of
weights of arcs in the tree. The SEM-tree with the
maximum weight is called the optimum semantic tree
or the optimum interpretation of a sentence.

2.2 Generation of semantic dependency graph

 Fig.2 shows the syntactic and semantic analysis flow
for the following Japanese example sentence.

kare-ha Taro-ga katta mise-wo otozureta

(he) (Taro) (bought) (store) (visited)
(He visited the store which Taro bought.)

An input word sequence (output of morphological
analysis process) is analyzed by three processes. The
output of each process is a syntactic dependency tree
(SYD-tree), a semantic dependency graph
(SED-graph), or a semantic tree (SEM-tree), respec-
tively.

 2.2.1 Syntactic analysis
 The syntactic analysis process generates only one
SYD-tree from an input word sequence using a ex-

tended CFG parser with an ability to construct word de-
pendency structure. Fig.2 (2a) shows the SYD-tree for the
example sentence. A SYD-tree has the following basic
features.
a. A node corresponds to a word in the input sentence
b. An arc shows a syntactic dependency relation (case,

nominal-modification etc.).
c. All candidates for one node's governor are in its

ancestor nodes.
Feature c can be realized by applying a strategy to

connect a word with its possible leftmost governor in the
sentence and making a SYD-tree hold all possible syntac-
tic dependency structures implicitly. In fact, a SYD-tree
in straight line, where the rightmost word of a sentence is
the root and the leftmost word of the sentence is a leaf,
holds all implicit dependency relations. Furthermore, a
SYD-tree has the following features.
d. Dependency relations which are not syntactically

available are naturally filtered out
e. An SYD-tree itself represents information on syntac-

tic structure of the input sentence.
An example of feature d is shown in Fig. 2. Since a

particle cannot modify a noun, Fig.2 (2b) generated by
syntactic parser has no implicit dependency relation be-
tween “kare-ha (he)” and “Taro-ga(Taro)”. Thus the fil-
tering of implausible possibilities is done by syntactic
knowledge. Feature e is useful in describing dependency
generation rules to be explained in the next section.

 2.2.2 Generation of s emantic dependency graph
 The second process generates a SED-graph from a

katta(bought)

1 kare-ha (he)

2 Taro-ga (Taro)

3 katta (bought)

4 mise-wo (store)

5 otozureta (visited)

mise-wo

(store)

ob
10

ag
10 ob

10

ag
15

lc 8

ob

0

ag

5 ag
15

ag
5

ob
10

ob
10

ag
15

ag
15

ob
10

otozureta (visited)

Taro-ga

(Taro)
kare-ha

(he)

mise-wo (store)
case

Input words SYD-tree SED-graph (Optimum) SEM-tree

Syntactic analysis

SED-graph generation

Optimum tree search

(2a) (2b) (2c) (2d)

case

case

case

katta (bought)

kare-ha

(he)
Taro-ga

(Taro)

otozureta (visited)

katta

mise-wo (store)

kare-ha

(he)
Taro-ga
(Taro)

otozureta (visited)
ag: agent
ob: object
lc: location

Fig. 2 Total flow of sentence analysis

SYD-tree. Fig.2 (2c) shows a SED-graph correspond-
ing to the example sentence. SED-arcs are set by pick-
ing up two nodes in a SYD-tree along with a path in
the tree, and calculating the semantic relation between
the two nodes (SED generation rule). The SED genera-
tion rule in the case of the particle "ha" generates two
SED-arcs ("agent", "object") between "kare(he)" and
"katta(bought)" because the particle "ha" can mark
these two different semantic rolls referring to the case
frame of the predicate “katta(bought)”. The same can
be said of "utta(sold)". Weight is also attached to each
arc by referring to various kinds of knowledge (syntac-
tic, semantic, heuristic knowledge, etc.). The follow-
ings are examples of knowledge;
a. If the semantic marker of a noun matches the se-

mantic condition of a case slot in a verb, then this
semantic dependency relation is semantically
preferable.

b. Particle “ha” represents a theme of a sentence, and
tends to modify the rightmost predicate in a sen-
tence.

c. Touten (“comma” in Japanese) attached to a word
decreases the possibility of modification of the
word to its nearest word.

3. Optimum tree search

 Searching for the optimum tree is defined as a search
for the maximum spanning tree for a directed acyclic
graph G=(N,A) (where N: set of nodes, A: set of arcs),
satisfying restriction R={< ai,aj> | p(ai,aj)=true, ai,aj�A}
where p defines restrictions. We adopt the branch and
bounding method as the basic strategy for searching the
optimum tree.

3.1 Branch and bounding method
 The branch and bounding method is a principle for
solving computationally hard problems such as
NP-complete problems. The basic strategy is that the
original problem is decomposed into easier par-
tial-problems (branching) and the original one is solved
by solving them. Pruning called bounding operation is
applied if it turns out that the optimum solution to a
partial-problem is inferior to the solution to be obtained
from some other partial-problem (dominance test), or if
it turns out that a partial-problem gives no optimum
solutions to the original one (maximum value test)
[Ibaraki 78].

3.2 Algorithm for optimum tree search
The optimum tree search algorithm for a SED-graph

G=(N,A) based on the branch and bounding method is
shown in Fig.3. Two restrictive conditions (cross de-
pendency, multiple valence occupation) are called the
co-occurrence restriction collectively. This algorithm in-
troduces a bounding operation based on the maximum
bound value test. The maximum spanning tree for G
gives the maximum bound value of the optimum tree for
G. In fact, problem P' (the maximum spanning tree for G)
satisfies the following features for the maximum bound
value test with respect to the original problem P (opti-
mum tree for G).
 a. g(P')≧f(P), where g(P') is the maximum value of

P', f(P) is the maximum value of P.
 b. If g(P')=1(P) where 1 gives a value of a feasible so-

lution to P, then the feasible solution is a solution to
P.

 c. If P' has no solutions then P has no solutions.
 d. If a feasible solution with an incumbent value z is

obtained for some partial-problem, and if g(P')≦z,
then partial-problems branched from problem P
have no better solutions than z.

A : Set of active partial-problems (not yet terminated nor
expanded)

 z : incumbent value
 O : set of optimum solutions
 s : Function s(A) selects one partial-problem in A
 l : Function 1(P) gives value of feasible solution of a partial
 problem P
 g : Function g(P) gives upper-bound value of a partial
 problem P(maximum spanning tree)

 S1 (initial -value set up) : A:= {P0}, z:=-∞, O:={}

 S2 (search) : If A={} goto S8, else Pi:=s(A) and goto S3.
 S3 (incumbent value update) :
 If 1(Pi)>z then z:=1(Pi), O:={x} (x is the feasible
 solution to Pi), and goto S4.
 S4 (G test) : If g(Pi)=-∞ or g(Pi)=1(Pi) then goto S7 else

 goto S5
 S5 (maximum value test) : If g(Pi)≦z then goto S7 else

 goto S6
 S6 (branching operation) : Generate partial-problem Pil and
 Pi2 from Pi, and A:= A ∪ {Pil , Pi2}-{Pi}. goto S2.

 S7 (termination of Pi) : A:=A-{ Pi }, goto S2
 S8 (stop) : Computation stop. If z = -∞ then P0 has no

 feasible solutions else z is the optimum value f(P0)
and x in O is the optimum solution to P0.

Fig.3 The optimum tree search algorithm based on
 the branch and bounding method

 In the case of b.-d., partial-problem P can be termi-
nated.
 In Fig.3, Sl initializes A, z, O. Initial problem P0 is
stored in A. S2 searches one active partial-problem Pi
to expand, from A. In S3, a feasible solution x
(well-formed tree) and its value is computed by func-
tion l. If this value is better than the incumbent value z,
then x and O are updated since a better feasible solution
is obtained. In S4, the maximum bound (weight of the
maximum tree) is computed by function g. In S4 and
S5, termination checks (b. to d. described above) are
applied. Any partial-problem which cannot be termi-
nated (i.e. the maximum bound of the partial-problem
is larger than the incumbent value) is expanded into
two child partial-problems in S6. And Pi in A is re-
placed with these problems. In this way, the problem is
decomposed into partial-problems forming a binary
search diagram. Each component in Fig.3 is described
below.

s(A): Selects one partial-problem from set A
 The best bound search is employed for s(A), i.e. s(A)
selects the partial-problem which has the maximum
bound value among active partial-problems. It is

known that the number of partial-problems decomposed
during computation is minimized by this strategy.

l(P): Computes a feasible solution
 Algorithm for 1 is shown in Fig.4. This algorithm pro-
vides depth-first search for a well-formed tree. Step1 clas-
sifies and sorts the arcs in G of P according to arc weight
for obtaining a better feasible solution (greedy search). In
step5, the co-occurrence restriction is checked and
backtracking occurs if necessary. The choice point to
backtrack is just the nearest choice point that may resolve
the contradiction respecting the co-occurrence restriction.
When this algorithm fails in searching for a solution, the
original problem P has no solutions.

g(P) : Calculates upper bound value
 This searches the maximum spanning tree for G. Since
G is DAG, the maximum tree is obtained by picking up
each maximum arc in Si (1�i�n-1) in Fig.4.

Branch operation:
 Child partial-problems of Pi are constructed as follows:

 a. Search arc el and e2 in the maximum spanning tree
for G=(N,Ei), which violate the co-occurrence restric-
tion.

 b. Create child partial-problems Pil,Pi2 which have new
graphs, Gi1=(N,Ei-{el}), and Gi2=(N,Ei-{e2}) respec-
tively.

 Since the optimum tree of Pi cannot contain both el and
e2 due to the co-occurrence restriction, the optimum solu-
tion to Pi is obtained from either Pi1 or Pi2.

EP: Array for saving arcs
BP: Array for saving the nearest backtrack points
num(Si): number of elements in Si
wg(EP): sum total of the weight of the arcs in EP

 stepl (Grouping and sorting arcs):
 Classify the arcs in graph G=(N,A)(|N|=n here) by their starting
 nodes, and generate the sets of arcs Sl, S2,...,Sn-1. Sort elements
 in each Si with respect to their weights in descending order. Sort
 Sl, S2,...,Sn-1 with respect to the maximum weight of the arcs in
 the set in descending order. This is renamed Sl, S2,...,Sn-1.
 step2 (initialize): EP:= [], BP:= [], i:=1, j:=1,k:=1, l=0, w:=-∞
 step3 (termination checkl): If i=n, then w:=wg(EP) and

terminate (EP holds a feasible solution for G),
otherwise, goto step4.

 step4 (termination check2): If num(Si)≧j then goto step5 else
EP:=[] and terminate (no solutions).

 step5 (restriction check):
 If j>num(Si) (no arcs in Si satisfies the co-occurrence restriction),
 goto step6. Perform the co-occurrence restriction check between
 j-th element a(i,j) of Si and each element (e1,e2,… ei-1) in EP in
 reverse order. If a(i,j) does not satisfy the co-occurrence restriction
 with element ek of EP then l:=max(l,k), j:=j+1, goto step5.
 If all co-occurrence restriction checks are satisfied then goto
 step7.
 step6 (backtracking): Remove el, el+1,...,ei-1 from EP,
 j:=BP[l]+1, i:=l, goto step4.
 step7 (next node):
 Add a(i,j) to the last of EP. BP[i]:=j, i:=i+1, j:=1, goto step3.

Fig .4 Algorithm for computing a feasible solution l(Pi)

mise-ni (store)

ob

20

ag

20
l

10

ob

0

ag
 15

 ag

35

c

ob

10

b

lc
k

j

h

g
ob

a d

40 20

tg

30
e ob

0

i

ag

30
f
 ag

kare-ga

(he)
watashi-ha

(I)

tsukue-wo

(desk)

utta (sold)

ag: agent
ob: object
tg: target
lc: location

katta(bought)

Fig. 5 Semantic dependency graph for the example sentence

3.3 Example of optimum tree search
This section gives an example showing the behavior

of the algorithm in 3.2. The sample sentence is "wa-
tashi-ha kare-ga tukue-wo katta mise-ni utta". This
sentence has four noun phrases and two verbs. The
SED-graph for this sentence is shown in Fig.5. Alpha-
bet labels “a”-“l” are arc identifiers. Verbs are assumed
to have the following simplified case frames, respec-
tively.

"Utta (sold)" ag[Agent], ob[Object], tg[Target]

"Katta (bought)"ag[Agent], ob[Object], lc[Location]

In Fig.5, "watashi (I)" has four outbound arcs, i.e. f,
g, h, i. This means "watashi (I)" can be a filler of "ag"
and "ob" case slots of verb "utta (sold)" and "katta
(bought)". "katta (bought)" introduces a Japanese em-
bedded sentence modifying “mise(store)”. In general, a
Japanese embedded sentence has no surface clue for
restricting semantic dependency relations. There are
three possible arcs between "katta (bought)" and "mise
(store)" representing semantic interpretations "bought
store"(j), "store bought"(k) and "bought at store"(l).
Each weight of arcs is set by the process described in
section 2.

Before explaining the behavior of the algorithm, I
will give the structure of a partial-problem that appears
in the computation process. Partial problem Pi consists

of the following three components.

a. Gi : Partial SED-graph for Pi
b. l(Pi) : Value of a feasible solution for Pi
c. g(Pi) : Upper bound value for Pi

Here, Gi is represented not by arcs that are constituents
of Gi but by arcs that are not in Gi but in the whole
SED-graph. "rem[]" shows arcs removed from the origi-
nal SED-graph. For example, "rem[a]" represents a par-
tial SED-graph consisting of arc b to l. This reduces the
memory space and the computation for algorithm l(Pi) in
3.2, i.e., step1 of this algorithm (Fig.4) is executed only
for the first problem. The result of this process for the
SED-graph in Fig.5 is as follows:

S1 : tukue(desk) a[ob,katta(bought),40], b[ob,utta(bought),10]

S2 : kare(he) c[ag,utta(sold),35], d[ag,katta(boungt),20]

S3 : mise(store) e[tg,utta(sold),30]

S4 : watashi(I) f[ag,utta(sold),30], g[ag,katta(bought),15],

 h[ob,katta(bought),0], i [ob,utta(sold),0]

S5 : katta(bought) j [ob,mise(store),20], k[ag,mise(store),20],

 l [lc,mise(store),10]

The SED-graph for one partial-problem is obtained by
removing an arc from the SED-graph of its parent prob-
lem.

Fig.6 shows a search diagram (or branch diagram) rep-
resenting the computational process for this example. In
this diagram, box represents a partial-problem with "l"
(value of feasible solution), "g" (upper bound value),
"rem" (SED-Graph) and "c" (arc-pair list). Arc pair in "c"

z = -∞

P0 rem[]
l=125 (a,c,e,i,k)
g=155, c=(c,f)/ MVO

P2 rem[f]
l=125 (a,c,e,i,k)
g=140, c=(g,c)/ CRD

z = 130

P1 rem[c]
l=130 (a,d,e,f,l)
g=140, c=(a,j) / CRD

z = 125

P3 rem[c,j,d]
NFS

z = 130

P4 rem[c,j]
l=130 (a,d,e,f,l)
g=140, c=(d,k)/ MVO

z = 130

P6 rem[c,j,k]
l=130 (a,d,e,f,l)
g=130

z = 130

P7 rem[f,g]
l=125 (a,c,e,i,k)
g=125

z = 130

P5 rem[c,j,d]
NFS

z = 130

P8 rem[f,c]
NFS

z = 130

CRD: cross dependency
MVO: multiple valence occupation
NFS: no feasible solution

Fig.6 Search diagram for the example sentence

is found in the maximum spanning tree and does not
satisfy the co-occurrence restriction. "z" shows an in-
cumbent value for before starting the computation of
the partial-problem. "P i" is an identifier of the par-
tial-problem and "i" shows the number of generation
orders. "P0" is an original problem and its rem is empty.
The feasible solution for this problem is (a,c,e,i,k) as
shown in the figure. The value of the feasible solution
is 125 and the upper bound value is 155. Here, the al-
gorithm described in 3.2 searches for the maximum
spanning tree and obtains the tree (a,c,e,f,j) which has
an arc pair c(c,f) violating the multiple valence occupa-
tion restriction. Since the initial value of "z" is -∞, it is
set to 125. Since arc c and f are inconsistent, initial
problem P0 is branched to two child partial-problems P1
and P2. Values for l, g, c in P1 and P2 are computed and
stored as shown in the figure. The next step is the
search for the partial-problem to be tried next. P1 and P2
are candidates and either of them is available since they
have the same upper bound value g (=140). In this case,
P1 is assumed to be the next target partial-problem to
solve. Processing of P3 is terminated since it has a
SED-graph rem[c,a] that has no plausible solutions.
Processing of P7 is terminated due to bounding opera-
tion where upper bound value g (=125) is less than
incumbent value z (=130). Finally, the semantic tree
shown in Fig.7 is obtained as the optimum solution for
P0.

3.4 Computational complexity of the algorithm
The most important parameter for estimating the

computational amount of the branch and bound method is
the number of generated partial-problems T. In general, T
increases exponential order with respect to the height of
the branch diagram. This height grows according to the
number of nodes in the given SED-graph, i.e. the number
of words in a sentence. Therefore, the number of par-
tial-problems grows exponentially to the sentence length.
The lower bound of T is known to hold the following
relation.

T ≧ ｜ { Pi｜ g(Pi)＞f(P0) } ｜
where g(Pi) is the upper bound value for Pi, and f(Pi)
is the value for the optimum solution for Pi.

This means that improvement of the accuracy of g(Pi)
reduces the minimum number of generated par-
tial-problems. The proposed algorithm adopts the maxi-
mum spanning tree for "g". The ability of g is one impor-
tant factor for achieving the practical performance in
analyzing real world sentences.

Main memory space factors of this algorithm are
SED-graph and partial-problems. If each two nodes in the
SED-graph with n nodes are connected by k arcs, the
graph has at most kn(n-1)/2 arcs. This requires O(n2)
memory space. On the other hand, required memory
space for partial-problems is a product of “memory space
for one partial-problem” and the “maximum number of
leaves (partial-problems) of branch diagram during a
computation”. One partial-problem requires O(n2) mem-
ory space for removed arc list.

The maximum number of the leaves of the branch dia-
gram increases exponentially with respect to the height of
the diagram. In practice, since the bounding operation
suppresses the increase of the leaves of the diagram, the
required space for the proposed algorithm also depends
on g and l, described in the previous section, as well as on
the structure of SED-graph. The next section describes an
experiment to ascertain the practical performance of the
algorithm.

4. Experiment of the algorithm

An experiment on the runtime efficiency of the algo-
rithm was performed using 100 sentences extracted from
a technical paper and a manual at random. The computer
used was an engineering workstation AS4260.
SED-graphs were provided by an existing piece of soft-
ware. The result of the experiment is shown in Fig.8. A

mise-ni (store)

l

10

ag

lc

ob

a d

40 20

tg

30
e ag

30
f

kare-ga

(he)
watashi-ha

(I)

tsukue-wo

(desk)

utta (sold)

ag: agent
ob: object
tg: target
lc: location

katta(bought)

Fig.7 Optimum semantic tree for the example sentence

Generated partial problems Sentence

 freq

9
3ms

1(12/13)
3775ms

12
25ms

37
80ms

20
173ms

7
312ms

6
365ms

1(1/5)
1258ms

1(4/7)
293ms

1(1/9)
1088ms

1(4/11)
436ms

1(1/11)
848ms

1(1/11)
1231ms

1(4/53)
11750ms

9

12

39

21

10

7

1

1

1～5 6～10 11～15 16～25 26～

1～2

6～10

11～
15

16～
20

21～
25

26～
30

31～
35

35～

N
u
m
ber o
f no
des in
 sem
antic dependenc

y graph

8a

8ｂ

number in a cell of the figure shows the number of sen-
tences from the sample fulfilling conditions. "(x/y)"
form in a cell shows information on the solution proc-
ess. The number in "x" position is the position of the
partial-problem that generated the feasible solution that
proved to be the optimum solution. The number in "y"
position shows the number of totally expanded par-
tial-problems. Average CPU time for the sentences in a
cell is also shown in "##ms" form. The following are
observations concerning Fig.8.

(1) The number of partial-problems required is rela-
tively small

93 sentences out of 100 sentences required less than
6 partial-problems. Feasible solution search function
l(P) based on greedy algorithm gave a good feasible
solution to a given problem and suppressed the number
of partial-problems.

(2) The optimum solution is obtained in the early stage
of search

 The sentence in a cell 8a in Fig.8 requires the
maximum number (53) of partial-problems to get the
optimum semantic tree. In this case, the optimum solu-
tion is obtained in the 4th partial-problem. The rest of
the computation, i.e. the computation for the 5th or
later partial-problems is performed only for checking if
the feasible solution of the 4th problem is the optimum
solution. In fact, 99% of the optimum solutions are

obtained in the process of solving the first 5 par-
tial-problems. One exception is 8b in Fig.8.

In this experiment, the average CPU time for obtaining
the optimum tree for one sentence was 305.8ms. Almost
all sentences require less than 1300ms, but 8a and 8b in
Fig.8 required 11750ms and 3775ms, respectively. In 8a,
the 4th partial-problem generated the optimum solution to
the problem but the bounding operation was not applied
to many succeeding partial-problems. In this situation,
improvement of the upper bound function seems to be
effective. In contrast, in the computation for 8b, all branch
operations were necessary to get the optimum tree. In this
case, improvement of feasible solution algorithm seems
to be effective.

5. Improvement of the algorithm

We made two improvements to the algorithm. One is
the improvement of function g. A new function g' is de-
fined as “g'(P)=g(P)-safe penalty score”. The other im-
provement is computation sharing between parent and
child partial-problems

5.1 Improvement of upper bound value g(P)
In order to reduce the number of partial-problems, im-

provement of the upper bound value g(P) is introduced.
g(P) described in 3.2 was the weight of the maximum
spanning tree on G. This g(P) can be reduced by the safe
penalty score computed from the arc pair in the maxi-
mum spanning tree on G, which violates the
co-occurrence restriction. If arc pair (Si[k], Sj[l]) violates
the co-occurrence restriction, the following score D can
be reduced from g(P) in the algorithm shown in Fig.3.

D = min(w(Si[k])-w(Si[k+1]),w(Sj[l])-w(Sj[l+1]))
where w(A) gives weight of arc A

g’(P) = g(P)-D

5.2 Sharing of computation for partial-problems
Since a parent problem and its child problems are very

similar, the same partial computations may be repeated in
each problem solving process. The proposed algorithm
l(P) adopts a backtracking method for computing a feasi-
ble solution. Since the back tracking algorithm is some-
times inefficient, sharing of the computation of feasible
solution between a parent problem and its child par-
tial-problems is introduced.

 Revised with these two improvements, number of
partial-problems and CPU time required in the analysis of

Fig.8 Result of the experiment

8a in Fig.8 improved from 53 to 9, and from 11750ms
to 1326ms, respectively. In the case of 8b, number of
partial-problems and CPU time improved from 13 to
11, and from 3775ms to 2826ms, respectively. Average
CPU time improved from 305.8ms to 162.1ms.

6. Related work

This paper proposed a framework for analyzing
Japanese sentences based on the “kakari-uke” analysis.
The basic component of kakari-uke analysis is a
kakari-uke relation (dependency relation) holding be-
tween two Japanese components called “bunsetsu”
(basic unit consisting of contents words and functional
words). Since a kakari-uke relation is subject to a re-
striction, namely that the dependent bunsetsu is located
at the left-hand side of its governor bunsetsu, a
kakari-uke grammar is considered to be a kind of the
dependency grammar.

CDG is defined by lexical category, semantic role‚
label set‚ and constraint set [Maruyama 90], [Karlsson
90]. CDG assumes all dependency relations between
every two words in a sentence at first, then inappropri-
ate interpretations are eliminated based on constraint.1
This method is called eliminative parsing to distinguish
it from the conventional generative parsing method
where possible parsing structures are generated in the
parsing process. In this paper, we adopt the principle
that sentence analysis system should be able to hold
possible interpretations until they can be disambiguated,
and should be able to commit an interpretation when-
ever it turns out to be committable. This idea is similar
to CDG's eliminative parsing. However, generation of
too much hypotheses causes problem in parsing effi-
ciency, and so our method generates hypotheses ob-
tained from the input sentence and the system’s
knowledge (ex. dictionary). In fact, in CDG research,
restriction of hypothesis generation by using the fast
filtering algorithm and the label table is introduced
[White 00]. The biggest difference between CDG and
our approach is that CDG treats restrictive application
of linguistic knowledge (constraints) but our approach
focuses on preferential application of linguistic knowl-
edge. As discussed in the first section of this paper, the
restrictive application of linguistic knowledge is
insufficient for language analysis. In CDG, a

1 There are unary constraint and binary constraint

ficient for language analysis. In CDG, a preferential
framework called “graded constraint” is proposed
[Heinec 98].

Beale proposed to utilize the Hunter-Gatherer method
(HD) for the analysis of computational semantics [Beale
96]. HD consists of a "hunting" mechanism for reducing
the search space by removing sub-optimal or impossible
solutions and a "gathering" mechanism for efficiently
extracting solutions from search space. HD is used in the
Pangloss machine translation system [Frederking 94] to
obtain the optimal combination of the word sense mean-
ings. The input for HD is a partitioned constraint de-
pendency graph which is obtained from the "Text Mean-
ing Representation" (TMR) produced by a syntactic
analysis module called "Panglyzer" [Farwell 94]. TMR
basically represents word dependency relations of a sen-
tence and is a source of a constraint dependency graph
which represents a set of constraints related to the word
sense meanings. Beale introduces the concept of the pref-
erence semantics by giving a constraint "tendency" to
each constraint, which is computed by using world
knowledge etc. For computing the optimal combination
of the word sense meanings, i.e. the optimal solution, HD
utilizes a solution synthesis method enhanced with the
partitioning of the constraint dependency graph and the
branch and bounding method. Although the application
task and the analysis framework of Beale's research is
different from that of this paper, Beale showed the intro-
duction of the preference score and use of the branch and
bounding method is useful for the computational seman-
tic application.

Various researches has been done on obtaining the op-
timum interpretation of Japanese kakari-uke (depend-
ency) analysis. The main framework for optimum
kakari-uke search is to represent possible kakari-uke rela-
tions with preference scores by utilizing a kakari-uke ma-
trix, and search for the optimum interpretation based on
the dynamic programming (DP) method. In kakari-uke
analysis, possible interpretations of a sentence should
satisfy the cross dependency restrictions. Ozeki proposed
a fast kakari-uke analysis method for real-time applica-
tions such as speech recognition [Ozeki 94]. In Ozeki's
method, the preference scores are basically assigned to
bunsetsus (phrasal-unit) and/or kakari-uke relations. Op-
timum interpretation is obtained by an efficient algorithm
based on DP. On the other hand, Kurohashi et al. pro-

posed a method for analyzing coordinate structure (part
of kakari-uke structure) in a long Japanese sentence
[Kurohashi 94]. In this method, syntactic/pattern simi-
larity value and semantic similarity value are totally
evaluated in an analysis process based on DP. There are
two main differences between conventional kakari-uke
analysis method and the one proposed in this paper.
One difference is that the kakari-uke relation is ex-
panded to the semantic kakari-uke relation. The second
one is that case analysis is introduced with multiple
case occupation restriction. This restriction relates more
than two constituents, and so efficient DP method is
not applicable to the maximum solution search prob-
lem.

Seo proposed the “Syntactic Graph” for representing
the possible dependency structures of a sentence [Seo
89]. Although a formal proof is not given in the paper,
every dependency structure embedded in an “Syntactic
Graph” seems to have one corresponding phrase struc-
ture in packed shared parse-forest. This representation
has an advantage compared with the semantic de-
pendency graph that all part of speech are represented
in one structure. This feature is not so important in
Japanese language analysis but is especially important
for the languages, such as English, with a lot of
part-of-speech ambiguities.

6. Conclusion

A Japanese sentence analysis method which uni-
formly evaluates syntactic and semantic preference
knowledge, and an optimum solution search algorithm
are described. This algorithm gives the most preferable
interpretation of sentences very efficiently (disam-
biguation) and provides a highly accurate and efficient
sentence analyzer for practical natural language sys-
tems.

[References]

[Wilks 75] Wilks, Y.A.: An Intelligent Analyzer and Under-
stander of English, Communications of the A.C.M., vol.18,
264-274,(1975)

[Tomita 87] Tomita, M.: An efficient augmented context -free
parsing algorithm, Computational Linguistics, Vol.13, (1987)

[Barton 85] Barton, G. E. and Berwick, R. C.: Parsing with
Assertion Sets and Information Monotonicity, Proceedings of
International Joint Conference of Artificial Intelligence-85,
(1985)

[Maruyama 90] Hiroshi, M.: Constraint Dependency Grammar
and its weak generative capacity, Computer Software, (1990)

[Hirakawa 89a] Hirakawa. H., Amano, S.: Japanese Sentence
analysis using syntactic/semantic preference (in Japanese), In
proceedings of the 3rd national conference of JSAI, pp. 363-366,
(1989)

[Hirakawa 89b] Hirakawa, H., Amano, S.: Method for Search-
ing Optimum Tree in Japanese Sentence Analysis (in Japanese),
IPSJ, Natural Language Processing 74－2, (1989)

[Ibaraki 78] Ibaraki,T.: Branch-and-bounding procedure and
state-space representation of combinatorial optimization prob-
lems, Information and Control,36,1-27,(1978)

[Karlsson 90] Karlsson, F.: Constraint grammar as a framework
for parsing running text, 13th International Conference on
Computational Linguistics, Vol.3, pp. 168-173, (1990)

[White 00] White, M. C.: Rapid Grammar Development and
Parsing: Constraint Dependency Grammars with Abstract Role
Value, PhD Thesis, Purdue University, (2000)

[Heinec 98] Heineck, J., Kunze, J., Menzel W., and Schroder I.,:
Eliminative parsing with graded constraints, In Proceedings of
the Joint Conference COLING-ACL, pp. 526-530, (1998)

[Beale 96] Beale, S., Nirenburg, S., and Mahesh, K.:
HUNTER-GATHERER: Three Search Techniques Integrated
for Natural Language Semantics, In Proceedings of AAAI-96,
pp.1056-1061,(1998)

[Frederking 94] Frederking, R., Nirenburg, S., Farwell, D.,
Helmreich, S., Hovy, E., Knight, K., Beale, C., Domashnev, C.,
Attardo, D., Granners, D., Brown, R.: Integration Translations
from Multiple Sources within the Pangloss Mark III Machine
Translation System, In Proceedings of the First Conference of
the Association for Machine Translation in the Americas. Co-
lumbia, Maryland, (1994)

[Farwell 94] Farwell, D., Helmreich, W., Casper, J., M., Har-
grave, J., Molina, H., Weng, F.,: PANGLYZER: Spanish Lan-
guage Analysis System, In Proceedings of the First Conference
of the Association for Machine Translation in the Americas.
Columbia, Maryland, (1994)

[Ozeki 94] Ozeki, K.: Dependency Structure Analysis as Com-
binatorial Optimization, Information Sciences 78(1-2), pp.77-99,
(1994)

[Kurohashi 94] Kurohashi, S. and Nagao, M.: A Syntactic
Analysis Method of Long Japanese Sentences based on the
Detection of Conjunctive Structures, Journal of Computational
Linguistics, Vol.20, No.4, pp.507-534, (1994)

[Seo 89] Seo, J. and Simmons, R. F.: A Syntactic Graphs: A
Representation for the Union of All Ambiguous Parse Trees,
Computational Linguistics, Vol.15, (1989)

