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Abstract 

There is combinatorial order of ambiguities in each level of natural language analysis, such as the 
morphology, syntax, and semantic  levels. Moreover, much of the linguistic knowledge in each level 
is preference knowledge and has mutual interference. Deterministic  processing is usually intro-
duced to avoid the combinatorial explosion. However, this restricts the ability of natural language 
processing system because of the above-mentioned features of linguistic  knowledge. This paper 
describes a sentence analysis method which uniformly evaluates syntactic and semantic preference 
knowledge, and shows an algorithm (based on the branch and bounding method) to search the  op-
timum semantic tree from a semantic dependency graph which holds syntactic and semantic ambi-
guities in a Japanese sentence. 

 

1. Introduction 

One of the most serious problems in natural lan-
guage analysis is an ambiguity resolution in various 
levels such as morphology, syntax, semantics and 
pragmatics. In each analysis level, there exist a combi-
natorial number of interpretations of sentences. A 
proper interpretation of a sentence should be selected 
based on consideration of the following characteristics 
of linguistic knowledge. 

a. A majority of linguistic and semantic knowledge is 
not restrictive knowledge but preference knowl-
edge. 

b. There is interference between the different levels of 
knowledge. 

 In the course of sentence analysis, many possible in-
terpretations appear regarding choices of parts of 
speech of words and choices of dependencies of words. 
These possibilities are generated as hypotheses of some 
kind in the analysis process. 

The restrictive application of linguistic knowledge 
causes the rejection of one or more interpretations and 
the preferential application gives the preferential order 
of the generated hypotheses. In general, Japanese word 
connection conditions are restrictively applicable lin-

guistic knowledge, and semantic knowledge is preferably 
applicable knowledge as shown in the preference seman-
tics [Wilks 75]. Linguistic knowledge recognized as re-
strictive knowledge sometimes has exceptions. For ex-
ample, cross dependency restriction is considered to be a 
strong restriction in Japanese language, there are excep-
tions such as 

watashi-ha sakana-wo Tokyo-ni tabe-ni itta. 
(I)       (fish)     (Tokyo)  (eat)   (go) 

 
Restrictive application of knowledge suppresses com-

binatorial explosions and improves process efficiency. 
However, if preference knowledge is applied restrictively, 
the system may fail to capture the correct interpretation of 
a sentence. 

The following example shows the interference be-
tween the different levels of knowledge, i.e. syntactic 
knowledge and semantic knowledge. 

S1. X-ha Y-ga ookii.  
   X-PT Y-PT big 
S2. Te-ha Taro-ga ookii. 
   hands-PT Taro-PT big 
S3. Taro-ga ookii te 
   Taro-PT big hands 



  In each of these examples, the upper sentence is a 
Japanese written in alphabetic characters, and the lower 
one shows the same sentence but content-words are 
replaced with English correspondences. “PT” means a 
particle in Japanese, which marks a case role. Here, 
sentence pattern S1 has two readings corresponding to 
(a) "X has big Y" and (b) "Y has big X". In S1, inter-
pretation (a) is preferable since particle "ha" often 
marks the theme of a sentence. On the other hand, in 
S2, interpretation (b) is preferable since syntactic  pref-
erence caused by "ha" is defeated by semantic prefer-
ence caused by semantic relation (part-whole relation) 
between hands and Taro (human). S3 shows a conflict 
between preferences originated from syntactic structure 
and semantic relation. This example shows the need for 
proper treatment of different levels of preference 
knowledge. 
  In order to handle the above two characteristics, a. 
and b., the following three functionalities are required. 

1) Incorporating possible interpretations of every 
analysis levels of a sentence efficiently into some 
structure 

2) Setting various kinds of preference values to inter-
pretations in the structure 

3) Finding the optimum interpretations with respect to 
preference values 

Tomita [Tomita 87] and Barton [Barton 85] pro-
posed a method for packing the whole phrase struc-
tures for a sentence efficiently. In Constraint Depend-
ency Grammar (CDG), possible dependency structures 
are maintained intentionally utilizing constraint matrix 
and constraint propagation mechanism excludes inap-
propriate structures [Maruyama 90]. Hirakawa pro-
posed a data structure called a semantic dependency 
graph for implementing the above three functionalities 
for Japanese sentence analysis [Hirakawa 89a]. The 
third functionality inherently requires combinatorial 
order of computation. An efficient and practical algo-
rithm for managing this computational problem is re-
quired. In this paper, branch and bounding method 
[Ibaraki 78] is adopted for obtaining the optimum in-
terpretation of a sentence [Hirakawa 89b]. Section 2 
describes a semantic dependency graph and its con-
struction method. Section 3 shows an algorithm for 
obtaining the optimum solution from a semantic de-
pendency graph. Section 4 and section 5 describes an 

experiment concerning the algorithm and improvement 
of implementation. Section 6 mentions related works. 

2. Semantic dependency graph 

2.1 Structure of semantic dependency graph 
There are various kinds of ambiguities in Japanese 

sentence analysis such as ambiguities in roles of words, 
directions of dependency relations, semantic relations 
between words, word references and so on. This paper 
focuses on ambiguities on directions of dependency rela-
tions and their semantic interpretations.  

A data structure called a semantic dependency graph 
(or SED-graph) is introduced to represent word depend-
ency relations and their semantic interpretation. In this 
graph, a node corresponds to a word in a sentence (parti-
cles are included). An arc connecting two nodes repre-
sents a possible dependency relation between them. An 
arc name shows the semantic relation or the role of the 
dependency relation. Each arc has a preference score 
called a weight. Fig.1 shows a semantic dependency 
graph for the Japanese sentence "watashi(I)-ha 
anata(you)-ga suki(like)-desu". English words in curved 
parentheses are translations of Japanese words.  

The labels "ag" and "ob" represent the semantic rela-
tions "agent" and "object", respectively. Since Japanese 
language has a restriction such that a dependent word is 
located on the left hand side of its governor, a semantic 
dependency graph is a directed acyclic graph (DAG). The 
semantic structure of a sentence is defined as a 
well-formed spanning tree on a semantic dependency 
graph. This is called a semantic tree (SEM-tree) of a sen-
tence. The SED-graph in Fig.1 has four spanning trees. 
Only two of them are well-formed tree, i.e., " watashi(I) 
-ag-> suki-desu(like) <- ob- anata(you)" and "watashi(I) 
-ob-> suki-desu(like) <-ag- anata(you)". Here, a 
well-formed tree is a tree that does not violate the follow-
S 
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Fig.1 Semantic dependency graph for “watashi-ha  
anata-ga suki-desu” 



ing two restrictions. 

r1. No two arcs cross in a tree (cross dependency) 
r2. No two arcs in a tree occupy the same valence of a 

predicate (multiple valence occupation) 

Restriction r2 filters out two ill-formed trees " wa-
tashi(I) -ag-> suki-desu(like) <-ag- anata(you)" and " 
watashi(I) -ob-> suki-desu(like) <-ob- anata(you)" on 
the SED-graph in Fig.1.  

The weight of a SEM-tree is the sum-total of 
weights of arcs in the tree. The SEM-tree with the 
maximum weight is called the optimum semantic tree 
or the optimum interpretation of a sentence. 

2.2 Generation of semantic dependency graph  

  Fig.2 shows the syntactic and semantic analysis flow 
for the following Japanese example sentence. 

kare-ha Taro-ga katta   mise-wo otozureta 

(he)    (Taro)  (bought) (store)  (visited) 
(He visited the store which Taro bought.)  

An input word sequence (output of morphological 
analysis process) is analyzed by three processes. The 
output of each process is a syntactic dependency tree 
(SYD-tree), a semantic dependency graph 
(SED-graph), or a semantic tree (SEM-tree), respec-
tively. 

  2.2.1 Syntactic analysis 
  The syntactic analysis process generates only one 
SYD-tree from an input word sequence using a ex-

tended CFG parser with an ability to construct word de-
pendency structure. Fig.2 (2a) shows the SYD-tree for the 
example sentence. A SYD-tree has the following basic 
features.  
a. A node corresponds to a word in the input sentence 
b. An arc shows a syntactic dependency relation (case, 

nominal-modification etc.).  
c. All candidates for one node's governor are in its 

ancestor nodes.  
Feature c can be realized by applying a strategy to 

connect a word with its possible leftmost governor in the 
sentence and making a SYD-tree hold all possible syntac-
tic dependency structures implicitly. In fact, a SYD-tree 
in straight line, where the rightmost word of a sentence is 
the root and the leftmost word of the sentence is a leaf, 
holds all implicit dependency relations. Furthermore, a 
SYD-tree has the following features. 
d. Dependency relations which are not syntactically 

available are naturally filtered out 
e. An SYD-tree itself represents information on syntac-

tic structure of the input sentence. 
An example of feature d is shown in Fig. 2. Since a 

particle cannot modify a noun, Fig.2 (2b) generated by 
syntactic parser has no implicit dependency relation be-
tween “kare-ha (he)” and “Taro-ga(Taro)”. Thus the fil-
tering of implausible possibilities is done by syntactic 
knowledge. Feature e is useful in describing dependency 
generation rules to be explained in the next section. 

  2.2.2 Generation of s emantic dependency graph 
 The second process generates a SED-graph from a 
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SYD-tree. Fig.2 (2c) shows a SED-graph correspond-
ing to the example sentence. SED-arcs are set by pick-
ing up two nodes in a SYD-tree along with a path in 
the tree, and calculating the semantic relation between 
the two nodes (SED generation rule). The SED genera-
tion rule in the case of the particle "ha" generates two 
SED-arcs ("agent", "object") between "kare(he)" and 
"katta(bought)" because the particle "ha" can mark 
these two different semantic rolls referring to the case 
frame of the predicate “katta(bought)”. The same can 
be said of "utta(sold)". Weight is also attached to each 
arc by referring to various kinds of knowledge (syntac-
tic, semantic, heuristic knowledge, etc.). The follow-
ings are examples of knowledge;  
a. If the semantic marker of a noun matches the se-

mantic condition of a case slot in a verb, then this 
semantic dependency relation is semantically 
preferable. 

b. Particle “ha” represents a theme of a sentence, and 
tends to modify the rightmost predicate in a sen-
tence. 

c. Touten (“comma” in Japanese) attached to a word 
decreases the possibility of modification of the 
word to its nearest word. 

3. Optimum tree search 

  Searching for the optimum tree is defined as a search 
for the maximum spanning tree for a directed acyclic 
graph G=(N,A) (where N: set of nodes, A: set of arcs), 
satisfying restriction R={< ai,aj> | p(ai,aj)=true, ai,aj�A} 
where p defines restrictions. We adopt the branch and 
bounding method as the basic strategy for searching the 
optimum tree.  

3.1 Branch and bounding method 
  The branch and bounding method is a principle for 
solving computationally hard problems such as 
NP-complete problems. The basic strategy is that the 
original problem is decomposed into easier par-
tial-problems (branching) and the original one is solved 
by solving them. Pruning called bounding operation is 
applied if it turns out that the optimum solution to a 
partial-problem is inferior to the solution to be obtained 
from some other partial-problem (dominance test), or if 
it turns out that a partial-problem gives no optimum 
solutions to the original one (maximum value test) 
[Ibaraki 78]. 

3.2 Algorithm for optimum tree search 
The optimum tree search algorithm for a SED-graph 

G=(N,A) based on the branch and bounding method is 
shown in Fig.3. Two restrictive conditions (cross de-
pendency, multiple  valence occupation) are called the 
co-occurrence restriction collectively. This algorithm in-
troduces a bounding operation based on the maximum 
bound value test. The maximum spanning tree for G 
gives the maximum bound value of the optimum tree for 
G. In fact, problem P' (the maximum spanning tree for G) 
satisfies the following features for the maximum bound 
value test with respect to the original problem P (opti-
mum tree for G). 
 a. g(P')≧f(P), where g(P') is the maximum value of 

P', f(P) is the maximum value of P. 
 b. If g(P')=1(P) where 1 gives a value of a feasible so-

lution to P, then the feasible solution is a solution to 
P. 

 c. If P' has no solutions then P has no solutions. 
  d. If a feasible solution with an incumbent value z is 

obtained for some partial-problem, and if g(P')≦z, 
then partial-problems branched from problem P 
have no better solutions than z. 

A : Set of active partial-problems (not yet terminated nor 
expanded) 

 z : incumbent value 
 O : set of optimum solutions 
 s : Function s(A) selects one partial-problem in A 
 l : Function 1(P) gives value of feasible solution of a partial 
   problem P 
 g : Function g(P) gives upper-bound value of a partial 
    problem P(maximum spanning tree) 

 S1 (initial -value set up) : A:= {P0},  z:=-∞, O:={} 

 S2 (search) : If A={} goto S8, else Pi:=s(A) and goto S3. 
 S3 (incumbent value update) : 
       If 1(Pi)>z then z:=1(Pi), O:={x} (x is the feasible  
       solution to Pi), and goto S4. 
 S4 (G test) : If g(Pi)=-∞ or g(Pi)=1(Pi) then goto S7 else  

       goto S5 
 S5 (maximum value test) : If g(Pi)≦z then goto S7 else  

       goto S6 
 S6 (branching operation) : Generate partial-problem Pil and  
      Pi2 from Pi, and A:= A ∪ {Pil , Pi2}-{Pi}. goto S2.  

 S7 (termination of Pi) : A:=A-{ Pi }, goto S2 
 S8 (stop) : Computation stop. If z = -∞ then P0 has no 

      feasible solutions else z is the optimum value f(P0) 
and x in O is the optimum solution to P0.  

Fig.3  The optimum tree search algorithm based on 
       the branch and bounding method 



  In the case of b.-d., partial-problem P can be termi-
nated. 
  In Fig.3, Sl initializes A, z, O. Initial problem P0 is 
stored in A. S2 searches one active partial-problem Pi 
to expand, from A. In S3, a feasible solution x 
(well-formed tree) and its value is computed by func-
tion l. If this value is better than the incumbent value z, 
then x and O are updated since a better feasible solution 
is obtained. In S4, the maximum bound (weight of the 
maximum tree) is computed by function g. In S4 and 
S5, termination checks (b. to d. described above) are 
applied. Any partial-problem which cannot be termi-
nated (i.e. the maximum bound of the partial-problem 
is larger than the incumbent value) is expanded into 
two child partial-problems in S6. And Pi in A is re-
placed with these problems. In this way, the problem is 
decomposed into partial-problems forming a binary 
search diagram. Each component in Fig.3 is described 
below. 

s(A): Selects one partial-problem from set A 
  The best bound search is employed for s(A), i.e. s(A) 
selects the partial-problem which has the maximum 
bound value among active partial-problems. It is 

known that the number of partial-problems decomposed 
during computation is minimized by this strategy. 

l(P): Computes a feasible solution 
  Algorithm for 1 is shown in Fig.4. This algorithm pro-
vides depth-first search for a well-formed tree. Step1 clas-
sifies and sorts the arcs in G of P according to arc weight 
for obtaining a better feasible solution (greedy search). In 
step5, the co-occurrence restriction is checked and 
backtracking occurs if necessary. The choice point to 
backtrack is just the nearest choice point that may resolve 
the contradiction respecting the co-occurrence restriction. 
When this algorithm fails in searching for a solution, the 
original problem P has no solutions. 

g(P) : Calculates upper bound value 
  This searches the maximum spanning tree for G. Since 
G is DAG, the maximum tree is obtained by picking up 
each maximum arc in Si (1�i�n-1) in Fig.4. 

Branch operation: 
  Child partial-problems of Pi are constructed as follows: 

  a. Search arc el and e2 in the maximum spanning tree 
for G=(N,Ei), which violate the co-occurrence restric-
tion. 

  b. Create child partial-problems Pil,Pi2 which have new 
graphs, Gi1=(N,Ei-{el}), and Gi2=(N,Ei-{e2}) respec-
tively. 

 Since the optimum tree of Pi cannot contain both el and 
e2 due to the co-occurrence restriction, the optimum solu-
tion to Pi is obtained from either Pi1 or Pi2. 

EP: Array for saving arcs 
BP: Array for saving the nearest backtrack points  
num(Si): number of elements in Si   
wg(EP): sum total of the weight of the arcs in EP 

 stepl (Grouping and sorting arcs): 
   Classify the arcs in graph G=(N,A)(|N|=n here) by their starting 
   nodes, and generate the sets of arcs Sl, S2,...,Sn-1. Sort elements 
   in each Si with respect to their weights in descending order. Sort 
   Sl, S2,...,Sn-1 with respect to the maximum weight of the arcs in 
   the set in descending order. This is renamed Sl, S2,...,Sn-1. 
 step2 (initialize): EP:= [], BP:= [], i:=1, j:=1,k:=1, l=0, w:=-∞ 
 step3 (termination checkl): If i=n, then w:=wg(EP) and  

terminate (EP holds a feasible solution for G),  
otherwise, goto step4. 

 step4 (termination check2): If num(Si)≧j then goto step5 else 
EP:=[] and terminate (no solutions). 

 step5 (restriction check): 
   If j>num(Si) (no arcs in Si satisfies the co-occurrence restriction),  
   goto step6. Perform the co-occurrence restriction check between 
   j-th element a(i,j) of Si and each element (e1,e2,… ei-1) in EP in  
   reverse order. If a(i,j) does not satisfy the co-occurrence restriction  
   with element ek of EP then l:=max(l,k), j:=j+1, goto step5.  
   If all co-occurrence restriction checks are satisfied then goto  
   step7. 
 step6 (backtracking): Remove el, el+1,...,ei-1 from EP, 
   j:=BP[l]+1, i:=l, goto step4. 
 step7 (next node):  
   Add a(i,j) to the last of EP. BP[i]:=j, i:=i+1, j:=1, goto step3. 

Fig .4 Algorithm for computing a feasible solution l(Pi) 
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3.3 Example of optimum tree search 
This section gives an example showing the behavior 

of the algorithm in 3.2. The sample sentence is "wa-
tashi-ha kare-ga tukue-wo katta mise-ni utta". This 
sentence has four noun phrases and two verbs. The 
SED-graph for this sentence is shown in Fig.5. Alpha-
bet labels “a”-“l” are arc identifiers. Verbs are assumed 
to have the following simplified case frames, respec-
tively. 

"Utta (sold)"    ag[Agent], ob[Object], tg[Target] 

"Katta (bought)"ag[Agent], ob[Object], lc[Location] 

In Fig.5, "watashi (I)" has four outbound arcs, i.e. f, 
g, h, i. This means "watashi (I)" can be a filler of "ag" 
and "ob" case slots of verb "utta (sold)" and "katta 
(bought)". "katta (bought)" introduces a Japanese em-
bedded sentence modifying “mise(store)”. In general, a 
Japanese embedded sentence has no surface clue for 
restricting semantic dependency relations. There are 
three possible arcs between "katta (bought)" and "mise 
(store)" representing semantic interpretations "bought 
store"(j), "store bought"(k) and "bought at store"(l). 
Each weight of arcs is set by the process described in 
section 2.  

Before explaining the behavior of the algorithm, I 
will give the structure of a partial-problem that appears 
in the computation process. Partial problem Pi consists 

of the following three components. 

a. Gi : Partial SED-graph for Pi 
b. l(Pi) : Value of a feasible solution for Pi 
c. g(Pi) : Upper bound value for Pi 

Here, Gi is represented not by arcs that are constituents 
of Gi but by arcs that are not in Gi but in the whole 
SED-graph. "rem[]" shows arcs removed from the origi-
nal SED-graph. For example, "rem[a]" represents a par-
tial SED-graph consisting of arc b to l. This reduces the 
memory space and the computation for algorithm l(Pi) in 
3.2, i.e., step1 of this algorithm (Fig.4) is executed only 
for the first problem. The result of this process for the 
SED-graph in Fig.5 is as follows: 

S1 : tukue(desk) a[ob,katta(bought),40], b[ob,utta(bought),10] 

S2 : kare(he)    c[ag,utta(sold),35], d[ag,katta(boungt),20]  

S3 : mise(store)   e[tg,utta(sold),30]  

S4 : watashi(I)   f[ag,utta(sold),30], g[ag,katta(bought),15], 

  h[ob,katta(bought),0], i [ob,utta(sold),0] 

S5 : katta(bought) j [ob,mise(store),20], k[ag,mise(store),20],  

 l [lc,mise(store),10] 

The SED-graph for one partial-problem is obtained by 
removing an arc from the SED-graph of its parent prob-
lem. 

Fig.6 shows a search diagram (or branch diagram) rep-
resenting the computational process for this example. In 
this diagram, box represents a partial-problem with "l" 
(value of feasible solution), "g" (upper bound value), 
"rem" (SED-Graph) and "c" (arc-pair list). Arc pair in "c" 
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is found in the maximum spanning tree and does not 
satisfy the co-occurrence restriction. "z" shows an in-
cumbent value for before starting the computation of 
the partial-problem. "P i" is an identifier of the par-
tial-problem and "i" shows the number of generation 
orders. "P0" is an original problem and its rem is empty. 
The feasible solution for this problem is (a,c,e,i,k) as 
shown in the figure. The value of the feasible solution 
is 125 and the upper bound value is 155. Here, the al-
gorithm described in 3.2 searches for the maximum 
spanning tree and obtains the tree (a,c,e,f,j) which has 
an arc pair c(c,f) violating the multiple valence occupa-
tion restriction. Since the initial value of "z" is -∞, it is 
set to 125. Since arc c and f are inconsistent, initial 
problem P0 is branched to two child partial-problems P1 
and P2. Values for l, g, c in P1 and P2 are computed and 
stored as shown in the figure. The next step is the 
search for the partial-problem to be tried next. P1 and P2 
are candidates and either of them is available since they 
have the same upper bound value g (=140). In this case, 
P1 is assumed to be the next target partial-problem to 
solve. Processing of P3 is terminated since it has a 
SED-graph rem[c,a] that has no plausible solutions. 
Processing of P7 is terminated due to bounding opera-
tion where upper bound value g (=125) is less than 
incumbent value z (=130). Finally, the semantic tree 
shown in Fig.7 is obtained as the optimum solution for 
P0.   

3.4 Computational complexity of the algorithm  
The most important parameter for estimating the 

computational amount of the branch and bound method is 
the number of generated partial-problems T. In general, T 
increases exponential order with respect to the height of 
the branch diagram. This height grows according to the 
number of nodes in the given SED-graph, i.e. the number 
of words in a sentence. Therefore, the number of par-
tial-problems grows exponentially to the sentence length. 
The lower bound of T is known to hold the following 
relation. 

T ≧ ｜ { Pi｜ g(Pi)＞f(P0) } ｜ 
where g(Pi) is the upper bound value for Pi, and f(Pi) 
is the value for the optimum solution for Pi. 

This means that improvement of the accuracy of g(Pi) 
reduces the minimum number of generated par-
tial-problems. The proposed algorithm adopts the maxi-
mum spanning tree for "g". The ability of g is one impor-
tant factor for achieving the practical performance in 
analyzing real world sentences.  

Main memory space factors of this algorithm are 
SED-graph and partial-problems. If each two nodes in the 
SED-graph with n nodes are connected by k arcs, the 
graph has at most kn(n-1)/2 arcs. This requires O(n2) 
memory space. On the other hand, required memory 
space for partial-problems is a product of “memory space 
for one partial-problem” and the “maximum number of 
leaves (partial-problems) of branch diagram during a 
computation”. One partial-problem requires O(n2) mem-
ory space for removed arc list.  

The maximum number of the leaves of the branch dia-
gram increases exponentially with respect to the height of 
the diagram. In practice, since the bounding operation 
suppresses the increase of the leaves of the diagram, the 
required space for the proposed algorithm also depends 
on g and l, described in the previous section, as well as on 
the structure of SED-graph. The next section describes an 
experiment to ascertain the practical performance of the 
algorithm. 

4. Experiment of the algorithm 

An experiment on the runtime efficiency of the algo-
rithm was performed using 100 sentences extracted from 
a technical paper and a manual at random. The computer 
used was an engineering workstation AS4260. 
SED-graphs were provided by an existing piece of soft-
ware. The result of the experiment is shown in Fig.8. A  
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Fig.7 Optimum semantic tree for the example sentence 
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number in a cell of the figure shows the number of sen-
tences from the sample fulfilling conditions. "(x/y)" 
form in a cell shows information on the solution proc-
ess. The number in "x" position is the position of the 
partial-problem that generated the feasible solution that 
proved to be the optimum solution. The number in "y" 
position shows the number of totally expanded par-
tial-problems. Average CPU time for the sentences in a 
cell is also shown in "##ms" form. The following are 
observations concerning Fig.8. 

(1) The number of partial-problems required is rela-
tively small 

93 sentences out of 100 sentences required less than 
6 partial-problems. Feasible solution search function 
l(P) based on greedy algorithm gave a good feasible 
solution to a given problem and suppressed the number 
of partial-problems. 

(2) The optimum solution is obtained in the early stage 
of search 

 The sentence in a cell 8a in Fig.8 requires the 
maximum number (53) of partial-problems to get the 
optimum semantic tree. In this case, the optimum solu-
tion is obtained in the 4th partial-problem. The rest of 
the computation, i.e. the computation for the 5th or 
later partial-problems is performed only for checking if 
the feasible solution of the 4th problem is the optimum 
solution. In fact, 99% of the optimum solutions are 

obtained in the process of solving the first 5 par-
tial-problems. One exception is 8b in Fig.8.  

In this experiment, the average CPU time for obtaining 
the optimum tree for one sentence was 305.8ms. Almost 
all sentences require less than 1300ms, but 8a and 8b in 
Fig.8 required 11750ms and 3775ms, respectively. In 8a, 
the 4th partial-problem generated the optimum solution to 
the problem but the bounding operation was not applied 
to many succeeding partial-problems. In this situation, 
improvement of the upper bound function seems to be 
effective. In contrast, in the computation for 8b, all branch 
operations were necessary to get the optimum tree. In this 
case, improvement of feasible solution algorithm seems 
to be effective.  

5. Improvement of the algorithm 

We made two improvements to the algorithm. One is 
the improvement of function g. A new function g' is de-
fined as “g'(P)=g(P)-safe penalty score”. The other im-
provement is computation sharing between parent and 
child partial-problems 

5.1 Improvement of upper bound value g(P) 
In order to reduce the number of partial-problems, im-

provement of the upper bound value g(P) is introduced. 
g(P) described in 3.2 was the weight of the maximum 
spanning tree on G. This g(P) can be reduced by the safe 
penalty score computed from the arc pair in the maxi-
mum spanning tree on G, which violates the 
co-occurrence restriction. If arc pair (Si[k], Sj[l]) violates 
the co-occurrence restriction, the following score D can 
be reduced from g(P) in the algorithm shown in Fig.3.  

D = min(w(Si[k])-w(Si[k+1]),w(Sj[l])-w(Sj[l+1]))  
where w(A) gives weight of arc A 

g’(P) = g(P)-D 

5.2 Sharing of computation for partial-problems  
Since a parent problem and its child problems are very 

similar, the same partial computations may be repeated in 
each problem solving process. The proposed algorithm 
l(P) adopts a backtracking method for computing a feasi-
ble solution. Since the back tracking algorithm is some-
times inefficient, sharing of the computation of feasible 
solution between a parent problem and its child par-
tial-problems is introduced.  

 Revised with these two improvements, number of 
partial-problems and CPU time required in the analysis of 

Fig.8 Result of the experiment 



8a in Fig.8 improved from 53 to 9, and from 11750ms 
to 1326ms, respectively. In the case of 8b, number of 
partial-problems and CPU time improved from 13 to 
11, and from 3775ms to 2826ms, respectively. Average 
CPU time improved from 305.8ms to 162.1ms. 

6. Related work 

This paper proposed a framework for analyzing 
Japanese sentences based on the “kakari-uke” analysis. 
The basic component of kakari-uke analysis is a 
kakari-uke relation (dependency relation) holding be-
tween two Japanese components called “bunsetsu” 
(basic unit consisting of contents words and functional 
words). Since a kakari-uke relation is subject to a re-
striction, namely that the dependent bunsetsu is located 
at the left-hand side of its governor bunsetsu, a 
kakari-uke grammar is considered to be a kind of the 
dependency grammar. 

CDG is defined by lexical category, semantic role‚ 
label set‚ and constraint set [Maruyama 90], [Karlsson 
90]. CDG assumes all dependency relations between 
every two words in a sentence at first, then inappropri-
ate interpretations are eliminated based on constraint.1 
This method is called eliminative parsing to distinguish 
it from the conventional generative parsing method 
where possible parsing structures are generated in the 
parsing process. In this paper, we adopt the principle 
that sentence analysis system should be able to hold 
possible interpretations until they can be disambiguated, 
and should be able to commit an interpretation when-
ever it turns out to be committable. This idea is similar 
to CDG's eliminative parsing. However, generation of 
too much hypotheses causes problem in parsing effi-
ciency, and so our method generates hypotheses ob-
tained from the input sentence and the system’s 
knowledge (ex. dictionary). In fact, in CDG research, 
restriction of hypothesis generation by using the fast 
filtering algorithm and the label table is introduced 
[White 00]. The biggest difference between CDG and 
our approach is that CDG treats restrictive application 
of linguistic knowledge (constraints) but our approach 
focuses on preferential application of linguistic knowl-
edge. As discussed in the first section of this paper, the 
restrictive application of linguistic knowledge is 
insufficient for language analysis. In CDG, a 
                                                 
1 There are unary constraint and binary constraint 

ficient for language analysis. In CDG, a preferential 
framework called “graded constraint” is proposed 
[Heinec 98].  

Beale proposed to utilize the Hunter-Gatherer method 
(HD) for the analysis of computational semantics [Beale 
96]. HD consists of a "hunting" mechanism for reducing 
the search space by removing sub-optimal or impossible 
solutions and a "gathering" mechanism for efficiently 
extracting solutions from search space. HD is used in the 
Pangloss machine translation system [Frederking 94] to 
obtain the optimal combination of the word sense mean-
ings. The input for HD is a partitioned constraint de-
pendency graph which is obtained from the "Text Mean-
ing Representation" (TMR) produced by a syntactic 
analysis module called "Panglyzer" [Farwell 94]. TMR 
basically represents word dependency relations of a sen-
tence and is a source of a constraint dependency graph 
which represents a set of constraints related to the word 
sense meanings. Beale introduces the concept of the pref-
erence semantics by giving a constraint "tendency" to 
each constraint, which is computed by using world 
knowledge etc. For computing the optimal combination 
of the word sense meanings, i.e. the optimal solution, HD 
utilizes a solution synthesis method enhanced with the 
partitioning of the constraint dependency graph and the 
branch and bounding method. Although the application 
task and the analysis framework of Beale's research is 
different from that of this paper, Beale showed the intro-
duction of the preference score and use of the branch and 
bounding method is useful for the computational seman-
tic application. 

Various researches has been done on obtaining the op-
timum interpretation of Japanese kakari-uke (depend-
ency) analysis. The main framework for optimum 
kakari-uke search is to represent possible kakari-uke rela-
tions with preference scores by utilizing a kakari-uke ma-
trix, and search for the optimum interpretation based on 
the dynamic programming (DP) method. In kakari-uke 
analysis, possible interpretations of a sentence should 
satisfy the cross dependency restrictions. Ozeki proposed 
a fast kakari-uke analysis method for real-time applica-
tions such as speech recognition [Ozeki 94]. In Ozeki's 
method, the preference scores are basically assigned to 
bunsetsus (phrasal-unit) and/or kakari-uke relations. Op-
timum interpretation is obtained by an efficient algorithm 
based on DP. On the other hand, Kurohashi et al. pro-



posed a method for analyzing coordinate structure (part 
of kakari-uke structure) in a long Japanese sentence 
[Kurohashi 94]. In this method, syntactic/pattern simi-
larity value and semantic similarity value are totally 
evaluated in an analysis process based on DP. There are 
two main differences between conventional kakari-uke 
analysis method and the one proposed in this paper. 
One difference is that the kakari-uke relation is ex-
panded to the semantic kakari-uke relation. The second 
one is that case analysis is introduced with multiple 
case occupation restriction. This restriction relates more 
than two constituents, and so efficient DP method is 
not applicable to the maximum solution search prob-
lem.  

Seo proposed the “Syntactic Graph” for representing 
the possible dependency structures of a sentence [Seo 
89]. Although a formal proof is not given in the paper, 
every dependency structure embedded in an “Syntactic 
Graph” seems to have one corresponding phrase struc-
ture in packed shared parse-forest. This representation 
has an advantage compared with the semantic de-
pendency graph that all part of speech are represented 
in one structure. This feature is not so important in 
Japanese language analysis but is especially important 
for the languages, such as English, with a lot of 
part-of-speech ambiguities.  

6. Conclusion 

A Japanese sentence analysis method which uni-
formly evaluates syntactic and semantic preference 
knowledge, and an optimum solution search algorithm 
are described. This algorithm gives the most preferable 
interpretation of sentences very efficiently (disam-
biguation) and provides a highly accurate and efficient 
sentence analyzer for practical natural language sys-
tems. 
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