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Abstract

There is combinatorial order of ambiguities in each level of natura language analysis, such as the
morphology, syntax, and semantic levels. Moreover, much of the linguistic knowledge in each level
is preference knowledge and has mutua interference. Deterministic processing is usualy intro-
duced to avoid the combinatorial explosion. However, this restricts the ability o natura language
processing system because of the above-mentioned features of linguistic knowledge. This paper
describes a sentence analysis method which uniformly evaluates syntactic and semantic preference
knowledge, and shows an algorithm (based on the branch and bounding method) to search the op-
timum semantic tree from a semantic dependency graph which holds syntactic and semantic ambi-

guities in a Japanese sentence.

1. Introduction

One of the mogt srious problems in naturd lan-
guage andysds is an ambiguity resolution in various
levds such as marphology, syntax, semantics and
pragmatics. In eech andysis levd, there exist acombi-
naorid number of interpretations of santences A
proper interpretation of a sentence should be sdlected
basad on condderation of the following characteridtics
of linguistic knowledge.

a A mgority of linguidic and semantic knowledge is
not redrictive knowledge but preference knowl-
edge.

b. The?e IS interference between the different leves of
knowledge.

In the course of sentence andlyss, many possible i
terpretations gopear regarding choices of parts of
gpeech of wordsand choices of dependencies of words
These possihilities are generated as hypotheses of some
kind in the analysis process.

The redrictive gpplication of linguigic knowledge
causss the rgection of one or more interpretations and
the preferentia gpplication gives the preferentid order
of the generated hypotheses. In generd, Jgpanese word
connection conditions are restrictively gpplicable lin-

guigtic knowledge, and semantic knowledge is preferably
goplicable knowledge as hown in the preference saman
tics [Wilks 75]. Linguistic knowledge recognized as 1e-
drictive knowledge sometimes has exceptiors. For ex-
ample, crossdependency redtriction is consderedto bea

drong redriction in Jgpanese language, there are excep
tions such as

watashi-ha sakana-wo Tokyo-ni tabe-ni itta.
0 (fish) (Tokyo) (eat) (90)
| | 1)

Redrrictive goplication of knowledge suppresses com-
binatorial explosons and improves process eficency.
However, if preference knowledge is goplied restrictivey,
the sysem may fall to capture the correct interpretetion of
a sentence.

The following example shows the interference be-
tween the different levds of knowledge, i.e syntactic
knowledge and semantic knowledge.

S1. X-ha'Y -ga ookii.
X-PT Y-PT big
. Te-ha Taro-ga ookii.

hands-PT Taro-PT big
S3. Taro-ga ookii te
Taro-PT big hands




In eech of these examples, the upper sentence is a
Japanese wrritten in dphabetic characters, and the lower
one shows the same sentence but contentwords are
replaced with English correspondences. “PT” meansa
patide in Jgpanese, which marks a case role. Here,
sentence pattern S1. has two readings corresponding to
(@ "X hashig Y" and (b) "Y has big X". In S1, inter-
pretetion () is preferade snce patide "hd' often
marks the theme of a sentence. On the other hand, in
2, interpretetion (b) is preferable Snce syntectic pref-
erence caused by "hd' is defegted by semantic prefer-
ence caused by semantic relation (partwhole relation)
between hands and Taro (humen). S3 shows a conflict
between preferences originated from syntactic Structure
and saEmanttic rdation. Thisexample showsthe need for
proper treatment of differet levds of preference
knowledge.

In order to handle the above two characteridics, a
and b., the following threefunctionditiesarerequired.

1) Incorpording possble interpretations of every
andyss leves of a sentence efficiently into some
structure

2) Sdting various kinds of preference vaues to inter-

pretations in the structure
3) Finding the optimum interpretations with repect to
preference values

Tomita [Tomita 87] and Baton [Baton 85 pro-
posad a method for packing the whole phrase struc-
tures for a sentence efficiently. In Condraint Depend
ency Grammar (CDG), possble dependency dructures
are mantained intentiondly utilizing congraint matrix
and congraint propagation mechaniam exdudes inap-
propriate gructures [Maruyama 90]. Hrekawva pro-
posad a deta dructure cdled a samartic dependency
gragph for implementing the above three functiondities
for Japanese sentence andyss [Hirakawva 8%. The
third functiondity inherently requires combinaorid
order of computation. An efficient and practicd ago-
rithm for managing this computationa problem is re-
quired. In this pgper, branch and bounding method
[lberaki 78] is adopted for obtaining the optimum
terpretation of a sentence [Hirakawa 89%). Section 2
describes a semantic dependency graph and its con
gruction method. Section 3 shows an dgorithm for
obtaining the optimum solution from a semantic de-
pendency graph. Section 4 and section 5 describes an

experiment concerning the dgorithm and improvement
of implementation. Section 6 mentions related works.

2. Semantic dependency graph

2.1 Structure of semantic dependency graph

There are various kinds of ambiguities in Japanese
sentence andyss such as ambiguities in roles of words,
directions of dependency reaions semantic relaions
between words, word references and o on. This paper
focuses on ambiguities on directions of dependency rela
tions and their semantic interpretations.

A data dructure cdled a samantic dependency grgph
(or SED-grgph) is introduced to represent word depend
ency relations and thar semantic interpretetion. In this
graph, a node corresponds to aword in a sentence (parti-
des are induded). An arc connecting two nodes repre-
sents a possible dependency rdation between them. An
arc name shows the semantic rdation or the role of the
dependency rddion. Each arc hes a preference score
cdled a weight. Fig.1 shows a semantic dependency
greph  for the Jganee satence  “watashi(l)-ha
anata(you)-ga suki(like)-desu”. English words in curved
parentheses are trandations of Japanese words.

The labds "ag" and "ob" represent the semantic rela
tions "agent”" and "object”, respectivdy. Since Jgpanese
language has aredtriction such that a dependent word is
located on the left hand Sde of its governar, a semarntic
dependency graphisadirected acyclic graph (DAG). The
Ematic dructure of a sentence is defined & a
wdl-formed spanning tree on a semantic dependency
graph. Thisis cdled a semarntic tree (SEM -tree) of asen
tence. The SED-graph in Fg.1 has four spanning trees
Only two of them are wdl-formed treg, i.e, " watashi(l)
-ag-> suki-desu(like) <- do- anata(you)" and "watashi(l)
-0b-> suki-desu(like) <-ag- anatalyou)'. Here, a
wel-formed treeis atree thet does not violate the follow-

S suki-desu (like)

ag: agent
ob: object

watashi-ha (I) anata-ga (you)

Fig.1 Semantic dependency graph for “watashi-ha
anata-ga suki-desu”



ing two restrictions.

rl. No two arcs crossin atree (cross dependency)
r2. No two arcs in atree occupy the same vdence of a
predicate (multiple valence occupation)

Redriction r2 filters out two ill-formed trees " we-
tashi(l) -ag-> suki-desu(like) <-ag- anata(you)" and *
watashi(l) -ob-> suki-desu(like) <-ob- anaa(you)” on
the SED-graph in Fig.1.

The waght of a SEM-tree is the sum-totd of
weights of arcs in the tree. The IEM-tree with the
maximum weight is caled the optimum semartic tree
or the optimum interpretation of a sentence.

2.2 Generation of semantic dependency graph

Fg.2 showsthe syntactic and semantic andyssflow
for the following Japanese example sentence.

kare-ha Taro-ga katta mise-wo otozureta
(he) (Taro) (bought) (store) (visited)
(He visited the store which Taro bought.)

An input word sequence (output of morphologicd
andyss process) is andyzed by three processes. The
output of each process is asyntactic dependency tree
(SYD-tree, a smatic dependency graph
(SED-graph), or a samantic tree (SEM-tree), respec-
tivey.

2.2.1 Syntactic analysis

The gyntactic andys's process generaes only one
SYD-tree from an input word sequence using a e«

tended CFG parser with an ability to construct word a&-

pendency dructure. Fig.2(28) showsthe SYD-treefor the

example sentence. A SYD-tree has the following lasic

features.

a A node correspondsto aword in theinput sertence

b. An arc shows a syntactic dependency rdation (case,
nominal-modification etc.).

c. All candidates for one nodes governor are in its
ancestor nodes.

Feeture ¢ can be redized by aoplying a drategy to
connect aword with its possble leftmos governor inthe
sentence and meking a SY D-tree hald dl possible syntac-
tic dependency gructures implicitly. In fat, a SYD-tree
in graight line, where the rightmost word of a sentenceis
the root and the leftmost word of the sentence is a ledf,
holds dl implicit dependency rdaions. Furthermore, a
SY D-tree has the following features.

d. Dependency rddions which are not syntacticdly
available are naturaly filtered out

e An SYD-tree itf represents information on syntac-
tic structure of the input sentence.

An example of fegture d is shown in FHg. 2. Snce a
particle cannot modify a noun, Fig.2 (2b) generated by
syntactic parser has no implicit dependency relation le-
tween “kare-ha (he)’ and “ Taroga(Taro)”. Thus the fil-
tering of implausble posshilities is done by syntactic
knowledge. Feature e is ussful in describing dependency
generation rules to be explained in the next section.

2.2.2 Generation of semantic dependency graph
The second process generdes a SED-grgph from a

Syntactic analysis SED-graphgeneration  Optimum treesearch

Input words :> SYD-tree I:>
otozureta_ (visited)
1 kare-ha (he) Q
_____________ case
2 Taro-ga (Taro) mise-wol_(store)
3 katta (bought) case

katta| (bought)

case
case

5 otozureta (visited) are-ha Taro-ga
(2a) (he)  (op) (Taro)

=

SED-graph (Optimum) SEM-tree

kare-ha

(he)

otozureta (visited)

otozureta (visited)

ag: agent

ag ob ob: object

15 Ic: location
katta(bought)

Taro-ga kare-ha Taro-ga
(Taro) (he) (Taro)

(2¢) (2d)

Fig. 2 Total flow of sentence analysis



SYD-tree Fg.2 (20) shows a SED-grgph corresponck
ing to the example sentence. SED-arcs are sathy pick-
ing up two nodes in a SYD-tree dong with a peth in
the tree, and calculaing the semantic relation between
the two nodes (SED generation rule). The SED genera
tion rule in the case of the partidle 'ha" generates two
SED-arcs ("agent”, "object”) letween 'karg(he)" and
"katta(bought)" because the patide "Ma" can mak
these two different semantic rolls referring to the case
frame of the predicate “ katta(bought)’. The same can
be said of "utta(sold)". Weight is dsoattached to each
arc by referring to various kinds of knowledge (syntac-
tic, semantic, heurigtic knowledge, etc.). The follow-
ings are examples of knowledge;

a If the ssmantic marker of a noun metches the &
mantic condition d acase dot in averb, then this
semantic dependency rdation is semanticaly
preferable.

b. Patide”ha’ representsatheme of asentence, and
tends to modify the rightmost predicate in a sen
tence.

c. Touten (‘comma’ in Jgpanese) atached to aword
decreases the possihility of modification of the
word to its nearest word.

3. Optimum tree search

Searching for the optimum treeis defined asasearch
for the maximum spanning tree for a directed acydic
graph G=(N,A) (where N: st of nodes A: st of arcs),
satifying redriction R=<{ <a,,8> | p(a,,&)=true, a,, g A}
where p defines restrictions. We adopt the branch and
bounding method asthe badic Srategy for searching the
optimum tree.

3.1 Branch and bounding method

The branch and bounding methad is a principle for
solving computationdly hard problems such as
NP-complete problems. The bedc drategy is that the
origind problem is decomposed into esser par-
ti al-problems (branching) and the origind oneissolved
by solving them. Pruning cdled bounding operation is
goplied if it turns out that the optimum solution to a
partia-problemis inferior to the solution to be obtained
from some other partia-problem (dominance test), or if
it turns out that apartia-problem gives no optimum
solutions to the origind one (maximum vaue test)
[Ibaraki 78].

A Set of active partial-problems (not yet terminated nor

expanded)

z: incumbent value

O : set of optimum solutions

s : Function s(A) selects one partial-problemin A

| : Function 1(P) gives value of feasible solution of a patid

problem P

g : Function g(P) gives upper-bound value of apartial

problem P(maximum spanning tree)

S1 (initial-value set up) : A={Py}, z=-o,h 0:={}
S2 (search) : If A={} goto SB, else P;:=s(A) and goto S3.
S3 (incumbent value update) :
If 1(P)>zthen z=1(P), O:={x} (xisthefeasible
solution to P,), and goto 4.
4 (G test) : If g(P)=- or g(P;)=1(P) then goto S7 el
goto b
S5 (maximum valuetest) : If g(P) zthen gotoS7 else
goto B
S6 (branching oper ation) : Generate partid-prodemP, ad
P, from Pi, and A== A {Py, P2} -{P}. goto 2.
S7 (termination of Pi) : A=A-{ Pi}, goto S2
S8 (stop) : Computation stop. If z=-c then Py has no
feasible solutions elsez is the optimum value f(Py)
and xin O is the optimum solution to Py.

Fg.3 Theoptimum tree search agorithmbased on
the branch and bounding method

3.2 Algorithm for optimum tree sear ch

The optimum tree search agorithm for a SED-grgph
G=(N,A) basad on the branch and bounding method is
shown in FHg.3. Two redrictive conditions (cross de-
pendency, multiple vaence occupation) are cdled the
co-occurrence regriction callectively. This dgorithm in-
troduces a bounding operation based onthe maximum
bound vdue tes. The maximum spaming tree for G
gives the maximum bound vaue of the optimum tree for
G. Infact, problem P' (the maximum spanning treefor G)
sidies the following festures for the maximum bound
vaue test with respect to the origind problem P (opti-
mum tree for G).

a g(P) f(P), wheeg(P)isthe maximum vaue of
P, f(P) is the maximum value of P.

b. If g(P)=1L(P) where 1 gives avdue of afeasible o-
lution to P, then the feasble solution is a solution to
P.

c. If P' hasno solutions then P has no solutions.

d. If afeasble solution with an incumbent vdue z is
obtained for some partid-problem, and if g(P) z
then partiakproblems branched from problem P
have no better solutions than z.



In the case of b.-d., partia-problem P can be termi-
nated.

In Fg.3, 9 initidizes A, z, O. Initid problem P, is
gored in A S2 searches one active partia-problem P,
to expand, from A In S3, a feesble solution x
(well-formed treg) and its vaue is computed by func-
tion I. If this vaue is better than the incumbent vaue z,
then x and O are updated Since a better feasible solution
isobtained. In $4, the maximum bound (weight of the
maximum tree) is computed by furction g. In $4 and
S5, termination checks (b. to d. described above) are
goplied. Any partia-problem which cannot be termi-
nated (i.e. the maximum bound of the partial-problem
is larger then the incumbent vaue) is expanded into
two child partial-problems in S6. And P in A is e
placed with these problems. In thisway, the problem is
decomposad into partiakprobdlems forming a binary
search diagram. Each component in FHg. 3 is described
below.

S(A): Selects one partia-problem from set A

The best bound seerch isemployed for JA), i.e SA)
sletts the partiakproblem which has the maximum
bound vdue among active partiakproblems It is

EP: Array for saving arcs

BP: Array for saving the nearest backtrack points
num(S): number of elementsin §

wg(EP): sum total of the weight of the arcsin EP

stepl (Grouping and sorting arcs):
Classify the arcsin graph G=(N,A)(JN|=n here) by their dating
nodes, and generate the sets of arcs S, S;,...,Sy1. Sotdamats
in each S with repect to their weightsin descending order. Sort
S, S,...,Sh 1 With respect to the maximum weight of thearcsin
the set in descending order. Thisisrenamed S, S,,...,S, 1.
step2 (initialize): EP:=[], BP:=[], i:=1, j:=1k=1I-0,w=-0
step3 (termination checkl): If i=n, then w:=wg(EP) and
terminate (EP holds afeasible solution for G),
otherwise, goto step4.
step4 (termination check2): If num(S) jthengotodegbdse
EP:=[] and terminate (no solutions).
step5 (restriction check):
If j>num(S) (no arcsin § satisfies the co-oocurenceresridion),
goto step6. Perform the co-occurrencerestriction check between
j-th dlement a(i,j) of S and each element (e;,&,... g7) INEPIN
reverse order. If a(i,j) does not satisfy theco-coourenceredriction
with element g of EP then I:=max(l k), j:=j+1, goto step5.
If al co-occurrence restriction checks are satisfied then goto
step?.
step6 (backtracking): Remove g, .1,...,6.1 from EP,
j:==BP[l] +1, i:=I, goto step4.
step7 (next node):
Add a(i,j) to thelast of EP. BP[i] :=j, i:=i+1, j:=1,gotogep3.

Fig .4 Algorithm for computing afeasible solution|(P)

known that the number of partiaproblems decomposed
during computation is minimized by this strategy.

1(P): Computes a feasible solution

Algorithm for 1 is shown in FHg.4. This dgorithm pro-
vides depthfirs search for awel-formed tree. Stepl das
sfiesand sortsthe arcs in G of P according to arc weight
for daaning a better feasble solution (greedy search). In
gep5, the co-occurrence redriction is checked and
backtracking occurs if necessary. The choice point to
backtrack is just the nearest choice point that may resolve
the contradiction respecting the co-occurrence regtriction.
When this dgorithm fals in searching for asolution, the
origina problem P has no solutions.

g(P) : Cdculates upper bound value

This searches the maximum spanning tree for G. Since
G is DAG, the maximum tree is obtained by picking up
eachmaximumarcin §(1 i n-1) in Fg4.

Branch operdtion:
Child partial-problems of P; arecongructed asfdlows

a Seach ac g ad & in the maximum spanning tree
for G=(N,E;), which violate the co-occurrence regtric-
tion.

b. Creste child partialproblems PP, which have new
graphs, G;=(N,E-{e}), and G,=(NE-{&;}) respec-
tively.

Since the optimum tree of P,cannot contain both g and
& due tothe co-occurrence redriction, the optimum solu-
tionto P, is obtained from either P;; or P;,.

utta (sold)
ag: agent
ob: object
tg: target
Ic: location
35
20 /10 [10
atta(bought)
watashi-ha tsukue-wc kare-ga

N (desk) (he)

Fig. 5 Semantic dependency graph for the example sentence



Po rem([]

1=125 (a,c,e,i,k)
0=155, c=(c,f) MVO

CRD: cross dependency
MVO: multiple valence occupation
NFS: no feasible solution

z=125
P; rem[c]
=130 (ad,ef,l) &

0=140, c=(aj) /CRD

z=130/ &

z=130
P2 rem[f]
1=125 (a,c,g,i,k)

=140, c=(g,c)/CRD

z =130 /

Ps rem[c,j,d] P, rem[c,j] Pz rem[f,g]
NFS 1=130 (a,d,ef,l) 1=125 (a,c,e,i,k)
g=140, c=(d,k)/ MVO g=125
z =130
Pg rem[f,c]
_ NFS
z=130 z2=13
- Ps rem[c,j k]
Z}rsa“[c“’d] 1=130 (ad.ef,l)
g=130

Fig.6 Search diagram for the example sentence

3.3 Example of optimum tree search

This section gives an example showing the behavior
of the dgorithm in 3.2. The sample sentence is "wa
tashi-na kare-ga tukue-wo kaita mise-ni uttd'. This
sentence has four noun phrases and two verbs The
SED-graph for this sentence is shown in FHg. 5. Alpha
bet labds “d'-“|” are arc identifiers Verbs are assumed
to have the following smplified case frames, respec-
tively.

"Utta (sold)" ag[Agent], ob[Object], tg[Target]
"Katta (bought)"ag[Agent], ob[Object], Ic[Location]

In Fg.5, "watashi (1)" has four outbound arcs i.e f,
g, h, i. This means "watashi (1)" can be afiller of "ag"
and "ob" case dots of vearb "utta (sold)" and "ketta
(bought)". "katta (bought)" introduces a Jgpanese an
bedded sentence modifying “misg(gtore)”. In generd, a
Japanese embedded sentence has no surface due for
resricting semantic dependency eldions. There are
three possible arcs between "katta (bought)” and "mise
(stare)" representing semarntic interpretations "bought
dore'(j), "sore bought"(k) and "bought a ore'(l).
Each weight of arcsis set by the process described in
section 2.

Before explaining the behavior of the dgorithm, |
will give the Sructure of a pertial-problem that gppears
in the computation process. Partid problem P, oon:g‘s:ts_c>o

of the following three components.

a G; : Partial SED-graph for P,
b. I(P;) : Vdue of afeasble solution for P,
c. g(P;) : Upper bound value for P,

Here G is represented not by arcs that are condituents
of G but by acs tha ae not in G but in the whole
SED-graph. "ren] " shows arcs removed from the origi-
nd SED-graph. For example, tem[a" represents a par-
tid SED-graph consgting of arc b to |. This reducesthe
memory oace and the computation for dgarithm I(P) in
32, i.e, gepl of this dgorithm (Fig4) is executed only
for the fird problem. The result of this process for the
SED-graphin Fig.5 is as fdlows:

S, tukue(desk) a[ob katta(bought),40], b[ob,utta(bought)10]

S,: kare(he) c[ag,utta(sold),35], d[ag,katta(boungt),20]

S;: mise(store)  e[tg,utta(sold),30]

S,: watashi(l)  f[ag,utta(sold),30], g[ag katta(bought),15],
h[ob,katta(bought),0], i [ob,utta(sold),0]

S, katta(bought) j [ob,mise(store),20], k[ag,mise(store),20],
| [lc,mise(store),10]

The SED-graph for one partia-problem is obtained by
removing an arc from the SED-grgph of its parent prd>
lem.

Fg.6 shows a search diagram (or branch diagram) rep-
resenting the computationd process for this example In
this diagram, box represents a partiakproblem with "I"
(vaue of feesble solution), "g" (upper bound vaue),
"rem" (SED-Grgph) and"'c" (arc-parr lig). Arc pairin"'c"



is found in the maximum spanning tree and does nat
satify the co-occurrence redriction. "Z' shows an in
cumbent vaue for before sarting the computation of

the partiad-prodem. "P;" is an identifier of the par-
tial-problem and "i* shows the number of generaion

orders. "Py" isan origind problem and itsrem is empty.
The feasble solution for this problem is (ac,ei k) as
shown in the figure. The vaue of the feasible solution
is 125 and the upper bound vdue is 155. Here, the d-
gorithm described in 3.2 searches for the maximum
gpaming tree and obtains the tree (ac,e,f,j) which hes
anac par ¢(cf) violating the multiple valence occupe:
tion redriction. Since the initid vaue of "Z' is -0 | itis
=t to 125. Since ac ¢ and f ae incosdat, initid

problem Py isbranched to two child partia-problems P,
and P.. Valuesfor |, g, cin P, and P, are computedand
dored as shown in the figure. The next gep is the
search for the partia-problem to betried next. P, and P,
are candidates and ether of them is avalable Sncethey
have the same upper bound vaue g(=140). Inthiscase,
P, is asumed to be the next target partia-problemto
s0lve. Processing of P; is terminated dnce it hes a
SED-graph rem[c,g that has no plausble solutions
Processing of P is terminated due to bounding qoera:
tion where pper bound vdue g (=125) is less then
incumbent vaue z (=130). Findly, the semarntic tree
shown in FHg.7 is obtained as the optimum solution for
Po.

3.4 Computational complexity of thealgorithm
The mog important parameter for esimating the

utta (sold)
ag: agent
19 ob: object
e
g 30 tg: target
32 mise-nji (store) Ic: location

tsukue-wc
n (desk) (he)

watashi -ha kare-ga

Fig.7 Optimum semantic tree for the example sentence

computationd amount of the branch and bound method is
the number of generated partia-problems T. Ingenerd, T
increases exponentid order with respect to the height of

the branch diagram. This height grows accor ding to the
number of nodesin the given SED-graph, i.e. the number
of words in a sentence Therefore, the number of par-
tial-problems grows exponentidly to the sentence length.
The lower bound of T is known to hold the following

relation.

T {P g(P) f(Po)}
where g(P) is the upper bound vaue for R, and f(P)
is the value for the optimum solution for P;.

This means that improvement of the accuracy of g(P)
reduces the minimum numbe of generded par-
tia-problems. The proposed agorithm adopts the maxi-
mum spanning tree for "g". The ability of g isoneimpor-
tant factor for achieving the practicd performence in
analyzing real world sentences.

Man memory gpace factors of this dgorithm are
SED-graph and partia-problems. If each two nodesin the
SED-graph with n nodes are connected by k arcs, the
graph has & most kn(n-1)/2 arcs This requires O()
memory space. On the other hand, required memory
spece for partial-problemsisa product of “memory space
for one partia-problem” and the “maximum number of
leaves (partia-pradems) of branch diagram during a
computtation”. One partiak-problem requires O(1°) mem:-
ory space for removed arc list.

The maximum number of the leaves of the branch dia-
gram increases exponentidly with respect to the height of
the diagram. In practice, Snce the bounding operation
uppresses the increase of the leaves of the diagram, the
required space for the propased agorithm aso depends
ongand|, described in the previous section, aswell ason
the structure of SED-grgph. The rext section describesan
experiment to ascertain the practicd performance of the
dgorithm.

4. Experiment of the algorithm

An epaiment on the runtime effidency of the dgo-
rithm was performed using 100 sentences extracted from
atechnicd paper and amaenud a random. The computer
ussd was an enginering workdaion AS4260.
SED-graphs were provided by an exiding piece of sof t-
ware. Theresult of theexperimentisshowninFig.8. A
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Fig.8 Result of the experiment

number in acdl of the figure shows the number of sen
tences from the sample fulfilling conditions. "(x/y)"
form in a cdl shows information on the solution prac-
ess The number in "X" pogtion is the padtion of the
partia-problem that generated the feasible solution that
proved to be the optimum solution. The number in"y"
postion shows the number of totdly expanded par-
tial-problems. Average CPU timefor the sentencesina
cdl is dso shown in "##ms' form. The fallowing are
observations concerning Fg.8.
(1) The number of partigkproblems required is rela

tively smal

93 sentences out of 100 sentences reguired less than
6 patia-problems. Feesble solution search function
I(P) basad on greedy dgorithm gave a good feesible
solution to a given problem and suppressed the number
of partia-problems.
(2) The optimum solution is obtained in the early dage
of search

The sentence in a cdl 8a in Fg8 requires the

maximum number (53) of partia-problems to get the
optimum semantic tree. In this case, the optimum solu-
tion is dxained in the 4th partiagHproblem. Therest of
the computation, i.e the computetion for the 5th or
later partiaHproblems is performed only for checking if
the feasible solution of the 4th problem is the optimum
solution In fact, 99% of the optimum solutions are

obtained in the process of solving the fird 5 par-
tia-problems. One exception is8bin Fig.8.

In this experiment, the average CPU time for dxtaining
the optimum tree for one sentence was 305.8ms. Almost
al sentences requiire less than 1300ms, but 8aand 8b in
Fg.8 required 11750ms and 3775ms, repectively. In 8a,
the 4th partiak-problem generated the gotimum solution to
the problem but the bounding operation was not gpplied
to many succeading partiaHproblems. In this Stuation,
improvement of the upper bound function seems to be
effective. In contrad, in the computation for 8b, dl branch
operdions were necessary to get the optimum tree. In this
cax, improvement of feasble solution dgarithm seems
to be effective.

5. Improvement of the algorithm

We mede two improvements to the dgorithm. Oneis
the improvement of function g. A new function g' is c&
fined as “g'(P)=g(P)-sfe pendty score’. The other im-
provement is computation sharing between parent and
child partial-problems

5.1 Improvement of upper bound valueg(P)

In order to reduce the number of patiakproblems, Im-
provement of the upper bound vaue g(P) is introduced.
0(P) described in 3.2 was the weight of the maximum
gpanning tree on G. This g(P) can be reduced by the safe
pendty score computed from the arc par in the maxi-
mum spaning tree on G, which violaes the
co-occurrence redriction. If arc pair Q[k], S[l]) violates
the co-occurrence redtriction, the following score D can
be reduced from g(P) inthe dgorithm shownin Fig.3.

D = min(W(S[K])-w(S[k+1]) w(S[I])-w(S[I+1]))

where w(A) gives weight of arc A
g'(P)=g(P)-D

5.2 Sharing of computation for partial-problems
Since a parent problem and its child problems are vary
gmilar, the same partia computations may be repested in
eech problem solving process. The proposed agorithm
|(P) adopts a backtracking method for computing a feesi-
ble solution. Since the back tracking dgorithm is some-
times inefficient, sharing of the computation of feesible
olution between a parent problem and its child par-
tia-problems is introduced.
Revisad with these two improvements, number of
partial-problemsand CPU time required in the andysis of



8ain Hg.8 improvedfrom 53 to 9, and from 11750ms
to 1326ms, respectivdy. In the case of 8b, number of
partia-problems and CPU time improved from 13 to
11, and from 3775ms to 2826ms, respectively. Average
CPU time improved from 305.8msto 162.1ms.

6. Related work

This paper proposed a framework for andyzing
Japanese sentences based on the “kakari-uke” andyss
The basc componet of kekai-uke adyss is a
kakari-uke relaion (dependency reaion) holding ke
tween two Jgpanese components caled “bunsetsU
(basic unit conagting of contents words and functiond
words). Since a kakari-uke rdaion is subject to a re-
driction, namely thet the dependent bunsstsu islocated
a the left-hand dde of its governor bunsatsu, a
kakari-uke grammer is conddered to be a kind of the
dependency grammar.

CDG is defined by lexicd category, ssmanticrole,
labd s, and condraint set [Maruyama 90], [Karlsson
90]. CDG assumes dl dependency rdations between
every two words in a sentence at firdt, then inappropri-
de interpretations are diminated based on congtraint?
This method is cdled diminative parsing to diginguish
it from the conventiond generdive parang method
where possible parang gructures are generated in the
parsing process. In this pgper, we adopt the principle
that sentence andyss sysem should be adle to hold
possible interpretations until they can be disambiguated,
and should be adleto commit an interpretation when
ever it turns out to be committable Thisideais Smilar
to CDG's diminative parang. However, generation of
too much hypotheses causes problem in parsng effi-
dency, and S0 our method generates hypotheses ob-
taned from the input sentence and the syderis
knowledge (ex. dictionary). In fact, in CDG research,
resriction of hypothess generation by usng the fast
filtering dgorithm and the labd table is introduced
[White 00]. The biggest difference between CDG and
our gpproach isthat CDG tregts redtrictive gpplication
of linguidtic knowledge (congtraints) but our gppraech
focuses on preferentid gpplication of linguidic know |-
edge. Asdiscussed in the firgt section of this peper, the
resrictive goplication of linguidic knowledge is
insffident for languege andyss In CDG, a

1 There are unary constraint and binary constraint

fident for language andyss In CDG, a preferentid
framework cdled “graded codrant” is proposd
[Heinec 99].

Bede proposd to utilize the Hunter-Gatherer method
(HD) for the andysis of computationd semartics [Bede
96]. HD conggts of a"hunting’ mechaniam for reducing
the search space by removing sub-optimd or impossible
solutions and a "gethering” mechanism for efficiently
extracting solutions from search gpace. HD isusad in the
Pangloss machine trandation sysem [Frederking 94] to
obtain the optima combinaion of the word sense meant
ings. The input for HD is a partitioned condrant de-
pendency graph which is obtained from the "Text Mean+
ing Representation” (TMR) produced by a syntactic
andysis module cdled "Panglyzer” [Fawdl 94. TMR
bedcaly represents word dependency rdaions of a sen
tence and is a source of a condraint dependency graph
which represants a set of condraints relaed to the word
sense meanings. Bed e introduces the concept of the pref-
erence samartics by giving a congrant "tendency” to
each comdraint, which is computed by usng world
knowledge etc. For computing the optima combinaion
of theword sense meanings, i.e. the optimd solution, HD
utilizes a solution synthesis method enhanced with the
patitioning of the condraint épendency graph and the
branch and bounding method. Although the application
task and the andyss framework of Bed€es research is
different from thet of this paper, Bede showed the intro-
duction of the preference soore and use of the branch and
bounding method is useful for the computational seman
tic application.

Vaious researches has been done on obtaining the op-
timum interpretation of Jepanese kakari-uke (dependt
ency) andyss. The man framework for optimum
kakari-uke search isto represent possible kakari-uke rela
tions with preference scores by utilizing a kakari-uke me:
trix, and search for the optimum interpretation based on
the dynamic programming (DP) method. In kakari-uke
analyds, possble interpretations of a sentence should
sidy the cross dependency redrictions. Ozeki pr gposed
a fag kakari-uke andyss method for rea-time goplica
tions such as gpeech recognition [Ozeki H4]. In Ozeki's
method, the preference scores are basicaly assigned to
bunsetsus (phrasak-unit) and/or kakari-uke rdaions. Op-
timum interpretation is obtained by an efficient dgarithm
based on DP. On the other hand, Kurohashi & d. pro-



posed amethod for analyzing coordinate structure (part
of kakari-uke dructure) in along Jgpanese sentence
[Kurohashi 9]. In this method, syntactic/pattern Smi-
larity vdue and semantic Smilarity vadue are totaly
evaluated in an andyd's process bassd on DP. Thereare
two main differences between conventiond kakari-uke
andyss method and the one proposad in this paper.
Ore difference is that the kakari-uke rdion is e«
panded to the semantic kakari-uke relation. The second
one is that case andyss is introduced with multiple
Ccase occupation redriction. This regtrictionrdaes more
than two condituents, and so efficient DP method is
not gpplicable to the maximum solution search prao-
lem.

Seo proposed the* Syntactic Grgph” for representing
the possible dependency dructures of a sentence [Seo
89]. Although aformd proof is nat givenin the paper,
every dependency sructure embedded in an “ Syntactic
Grgph” seems to have one corresponding phrase sirc-
ture in packed shared parse-forest. This representation
has an advantage compared with the semantic de-
pendency graph that dl part of speech are represented
in one gructure. This feature is not O important in
Japane=e language andlysis but is espedidly important
for the languages, such as English, with a lot of
part-of -speech ambiguities.

6. Conclusion

A Jgpanese sentence andysis method which uni-
formly evduates syntectic and semantic preference
knowledge, and an optimum solution search dgorithm
are described. This dgorithm gives the mod preferable
interpretation of sentences vary effidently (disam
biguation) and provides a highly accurate and efficient
sentence anayzer for practica naturd languege S5
tems.
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