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Abstract

A system is presented for inducing Catego-

rial Grammar (CG) lexicons for natural lan-

guage from either unannotated or minimally

annotated corpora extracted from the Penn

Treebank. A combination of symbolic and

stochastic methods have been used to build a

computationally e�ective and psychologically

plausible system, which learns linguistically

useful lexicons. There are a variety of pa-

rameters in the system, including the corpus

annotation used, the knowledge given to the

learner and the weight given to the symbolic

and stochastic methods. We present results

from a set of experiments that investigate

these parameters. The results also show that

the system performs well even when compared

with systems used for simpler problems.

1 Introduction

In this paper we present a system, the Cat-

egorial Lexicon Learner (Cll), for learning

wide-coverage probabilistic Categorial Gram-

mar (CG) lexicons. It seems that humans

learn language, including syntax, very e�ec-

tively, so Cll has been designed focusing on

both computational e�ectiveness and psycho-

logical plausibility, with the aim of learning

linguistically plausible lexicons.

Cll can be used with a variety of settings,

a number of which we present here. Two dis-

tinct settings of the knowledge available are

investigated. The �rst allows no annotation

on the examples presented to the learner (i.e.

an unsupervised approach), however, Cll is

provided with an initial lexicon (two di�erent

sizes have been investigated) of some closed-

class words. The second allows no initial lexi-

con, but nouns and verbs in the corpus are an-

notated (i.e. a weakly supervised approach)

and the possible CG categories for nouns and

verbs are known.

Finally, the system uses both symbolic and

stochastic constraints on the search space to

direct the learner towards linguistically plau-

sible hypotheses. This is achieved using a

probabilistic version of CG. We investigate

varying the strength of the probabilistic con-

straints to determine, which setting provides

the most plausible linguistic results.

Experiments have been performed on ex-

amples from the Penn Treebank to investigate

these parameters. They allow us to determine

the best settings for Cll and also provide us

with some indication of the knowledge and

methods that can be used for a system to learn

syntax in a way that is both computationally

e�ective and psychologically plausible. The

investigation of the combination of stochas-

tic and symbolic constraints shows that these
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two approaches can be simply incorporated

in a syntax learning setting and that simple

symbolic and stochastic models provide satis-

factory results. Finally, the experiments show

that Cll performs respectably on a diÆcult

learning problem, especially when compared

to other systems used for less diÆcult prob-

lems.

The following section deals with the

stochastic Categorial Grammar which is used

by Cll. Section 3 discusses the use of com-

pression in learning and how it is applied

in Cll. Section 4 describes Cll in de-

tail, including what linguistic knowledge can

be made available to the learner and how

the probabilistic and symbolic constraints are

combined. Section 5 provides detailed infor-

mation about the corpora that are used for

the experiments. The experiments are de-

scribed in Section 6 along with the results

achieved. Similar work is discussed in Sec-

tion 7. Finally, some conclusions about Cll

and some extensions that need to be consid-

ered are presented in Section 8.

2 A Stochastic Model of Cat-

egorial Grammar

A large variety of formalisms have been devel-

oped to represent grammatical information.

In this section we describe the Categorial

Grammar formalism along with the stochastic

extensions and explain why it has been used.

Categorial Grammar (CG) [22, 13] provides

a functional approach to lexicalised grammar,

and so, can be thought of as de�ning a syn-

tactic calculus. Below we describe the basic

(AB) CG.

There is a set of atomic categories in CG,

which are usually nouns (n), noun phrases

(np) and sentences (s). It is then possible

to build up complex categories using the two

slash operators \/" and \n". If A and B are

categories then A/B and AnB are categories.

With basic CG there are just two rules for

combining categories: the forward (FA) and

backward (BA) functional application rules.

Following Steedman's notation [13] these are:

X=Y Y ) X (FA)

Y XnY ) X (BA)

We also include an extra rule for building

compound noun phrases (which can cause

problems in CG [22]).

np np ) np (NP )

In Figure 1 the parse derivation for \John

ate the apple" is presented.

FA

FA

BA

John appletheate

np\s (0.4)

s (0.4)

 np (1.0) (np\s)/np (0.5) np/n (1.0) n (0.8)

np (0.8)

Figure 1: An example parse in CG

CG has at least the following advantages

for our task.

� Learning the lexicon and the grammar is

one task.

� The syntax directly corresponds to the

semantics.

The �rst of these is vital for the work pre-

sented here. Because the syntactic structure

is de�ned by the complex categories assigned

to the words, it is not necessary to have sep-

arate learning procedures for the lexicon and

for the grammar rules. Instead, it is just one

procedure for learning the lexical assignments

to words.

Secondly, the syntactic structure in CG

parallels the semantic structure, which allows

an elegant interaction between the two. While

this feature of CG is not used in the cur-

rent system, it could be used in the future

to add semantic background knowledge to aid

the learner, or for inducing semantic knowl-

edge.
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Stochastic models of grammar allow us to

focus on the most likely of many possible anal-

yses and can be used to provide a robust lan-

guage model. We use a stochastic extension

to Categorial Grammar, which is very similar

to that given by Osborne and Briscoe [11].

Given a set of words W and a set of cate-

gories C, which those words can have assigned

to them, then the lexicon consists of a set of

triples (w; c; f) where w 2 W , c 2 C and f

is the frequency of this word-category pairing

(based on the statistics from some corpus).

The probability of a word being assigned a

particular category is then the relative fre-

quency of that word-category pairing with re-

spect to the frequency of the word. That is,

given a lexical entry (w; c; f) then the prob-

ability of the word w taking the category c

is
f

freq(w)

where freq(w) is the total frequency of the

word w in the lexicon (i.e. the sum of the

frequencies of all the lexical entries for w).

These probabilities can then be used to give

likelihood assignments to parses as follows.

All word-category pairs in a parse are assigned

their probabilities. Then for each step of the

parse, the resultant category is assigned the

product of the probabilities of the combined

categories. The application rules could now

be written:

(X=Y; Pi) (Y; Pj) ) (X;Pi � Pj) (FA)

(Y; Pi) (XnY; Pj) ) (X;Pi � Pj) (BA)

(np; Pi) (np; Pj) ) (np; Pi � Pj) (NP )

where Pi and Pj are the probabilities of the

categories. The probability of a particular

analysis is the probability of the �nal category

that is derived (usually an s). Alternatively,

this value is the product of the probabilities of

all the lexical entries used for the derivation,

however, the intermediate category probabil-

ities are used by Cll. Figure 1 includes an

example of deriving the probability of a parse.

It is evident that we are calculating the

probability of sequences of word-category

pairs, not parses. As some of these sequences

cannot be used to derive a parse, we have

not actually de�ned a probability distribu-

tion over the set of possible parses. How-

ever, we suggest that the ranking of parses

provided by this process will provide the nec-

essary stochastic input to the learning pro-

cess.

3 Compression as Learning

Inductive learning is commonly viewed as a

process of compression, or optimisation [8].

In the context of natural language grammar

learning, compression is vital. There are an

in�nite number of utterances that could need

to be understood or generated, but there is

only a �nite space in which to represent the

knowledge needed to perform the appropriate

analysis. Wol� (e.g. [21]) has been one of

the foremost proponents of considering natu-

ral language learning as compression from a

psychological perspective, as well as compu-

tational perspective.

The results presented here use one type of

compression. The aim is to build the smallest

lexicons which cover the data. In this con-

text we de�ne \smallest" as the lexicon with

the fewest number of lexical entries. Cur-

rently we are also investigating performing ex-

periments using a minimum length encoding

scheme similar to that of Osborne and Briscoe

[11], which takes into account the frequency

information stored in the lexicon and so can

be considered to be compressing the corpus

annotated with lexical categories.

4 The Learner

Cll is shown diagrammatically in Figure 2.

In the following sections we explain the learn-

ing setting and the learning procedure respec-

tively.
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Figure 2: A diagram of the structure of the learner

4.1 The Examples

Two types of corpora have been used with two

versions of Cll. Examples of the �rst type

are simply Prolog facts containing a list of

words e.g.

ex([mary,saw,a,man]).

Examples of the second type are similar, but

have the nouns and verbs marked e.g.

ex([(N, mary),(V, saw),a,(N, man)]).

These types of examples have been investi-

gated because of their psychological plausibil-

ity. It seems likely that humans do not receive

examples with full structural annotation, but

they may have learned some word groupings,

e.g. noun and verbs [12, 19].

4.2 Initial Knowledge

The learner has four types of knowledge,

which it may apply to the learning process.

Again these have been chosen for their psy-

chological plausibility [19].

Lexical Knowledge When the corpus used

has no annotation, then a lexicon of closed-

class words (determiners, prepositions and

co-ordinating words) is supplied. Experi-

ments have been performed with two di�erent

sizes of lexicon to determine how e�ective the

initial lexicon is for constraining the search

space. The small initial lexicon (SIL) contains

31 entries and the large initial lexicon (LIL)

contains 348 entries. A lexical entry is imple-

mented as a Prolog fact containing a word,

a category and a frequency, i.e. the number

of times which that word has appeared with

that category, e.g.

lex(mary, np, 25).

The initial closed-class word lexicon is slightly

di�erent, as the lexical entries are marked

as being closed-class and they are assigned

a hand-built probability distribution prior to

their use e.g.

lex(cc(the), np/n, 1.0).

The initial lexicons are used to bootstrap

Cll and make it reasonably e�ective over a

small set of examples. They are also reason-

ably psychologically plausible, as a child has

learned some notion of simple word group-

ings and roles prior to learning complex syn-

tax. However, it is perhaps more plausible

that the child has learned verbs and nouns in
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this sense. Hence, we have the second setting

where the noun and verbs are annotated in

the corpus.

In this second setting, no initial lexicon is

supplied, however, to maintain computational

eÆciency the sets of categories that nouns and

verbs can take are given to Cll. They are

used to reduce the ambiguity of nouns and

verbs and so reduce the possible search space.

The Rules The probabilistic CG rules (see

Section 2) are supplied to the learner.

The Categories The learner has a com-

plete set of the categories that can be assigned

to a word in the lexicon. Currently we are us-

ing a system with 30 possible categories, that

allow most common declarative structures.

The Parser The system employs a proba-

bilistic CKY chart parser (adapted from an

algorithm given by Collins [3]), which calcu-

lates the N most probable parses, where N

is the beam set by the user. The probabil-

ity of a word being assigned a category is

the relative frequency from the current lexicon

(as described in Section 2). This probability

is smoothed (for words that are not in the

closed-class lexicon) to allow the possibility

that the word may appear as other categories.

For all categories for which the word has not

appeared, it is given a frequency of one, ex-

cept for the noun phrase category, which is

given a frequency of ten if it has not occurred

previously. This ensures an appropriate bias

for the most common category for unknown

words. This smoothing process is particularly

useful for new words, as it ensures the cate-

gory of a word is determined by its context.

A more advanced smoothing approach could

be included in future. However, this system

allows unknown words to have their category

de�ned by their context. It also allows unseen

word-category pairs to be hypothesised.

Each non-lexical edge in the chart has

a probability calculated by multiplying the

probabilities of the two edges that are com-

bined to form it (as described in Section 2).

Edges between two vertices are not added if

there are N (i.e. the value of the beam) edges

labelled with the same category and a higher

probability, (if one has a lower probability it

is replaced).

It is important that the parser is eÆcient,

as it is used on every example and each

word in an example may be assigned any

of a large number of categories. It is also

used extensively in selecting the best parses

(see below). Our probabilistic CKY parser

meets this need, replacing earlier less eÆcient

parsers.

The parser is also perhaps the most obvious

place where the stochastic and symbolic con-

straints interact to suggest parses and hence

hypothesise the changes to the lexicon. The

larger the beam used, then the smaller the im-

plications of the stochastic process, as more

parses that would be available without the

stochastic input are present. We use beam

values of 1, 2 and 4 in the experiments to in-

vestigate the interaction between the stochas-

tic and symbolic constraints on Cll.

4.3 The Learning Process

Having described the various components

with which the learner is provided, we now

describe how they are used in the learning

process.

Parsing the Examples Examples are

taken from the corpus one at a time and

parsed. Each example is stored with the

group of parses generated for it, so they can be

eÆciently accessed in future. The parse that

is selected as the current correct parse (see be-

low) is maintained at the head of this group.

The head parse contributes information to the

lexicon and annotates the corpus. The other

parses are also used extensively for the eÆ-

ciency of the parse selection module, as will

be described below. When the parser fails to

�nd an analysis of an example, either because
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it is ungrammatical, or because of the incom-

pleteness of the coverage of the categories, the

system skips to the next example.

The Parse Selector Once an example has

been parsed, the N most probable parses are

considered in turn to determine which can be

used to make the most compressive lexicon by

minimising the number of lexical entries.

Cll does not just look at what a parse

would add to the lexicon. Changing the lexi-

con may change the results given by the parser

for previous examples. Changes in the fre-

quency of assignments may cause the proba-

bilities of previous parses to change. This can

correct mistakes made earlier when the evi-

dence from the lexicon was too weak to assign

the correct parse. Such correction is achieved

by reparsing previous examples that may be

a�ected by the changed lexicon (i.e. those ex-

amples that have some of the same words as

the current example, but assigned to di�er-

ent categories). Not reparsing those examples

that will not be a�ected, improves time eÆ-

ciency greatly. In this way a new lexicon is

built from the reparsed examples for each hy-

pothesised parse of the current example. The

parse leading to the most compressive of these

is chosen. The amount of reparsing is also re-

duced by using stored parse information, se-

lecting a parse with the di�erent categories

that has already been calculated and recalcu-

lating the probabilities only.

This may appear an expensive way of de-

termining which parse to select, but it enables

the system to calculate the most compressive

lexicon and keep an up-to-date annotation for

the corpus. Also, the parser is reasonably eÆ-

cient and it is possible to do signi�cant prun-

ing, as outlined, so few sentences need to be

reparsed each time.

Lexicon Modi�cation The �nal stage

takes the current lexicon and replaces it with

the lexicon built using the selected parse. The

whole process is repeated until all the exam-

ples have been parsed. The �nal lexicon is

left after the �nal modi�cation and the most

probable annotation of the corpus is the set of

top-most parses after the �nal parse selection.

5 Corpora

The system is applied to examples extracted

from the Penn Treebank II [10, 9, 1] a corpus

of over 4.5 million words of American English

annotated with both part-of-speech and syn-

tactic tree information.

The full Penn Treebank is not being used.

The current corpora only contain sentences

without null elements from the treebank (i.e

sentences without any movement) and do not

include any of the sentence fragments. They

have been extracted from the Wall Street

Journal Section of the Penn Treebank. The

corpus, C1, contains 5000 sentences of 15

words or less with an average length of 9.56

words. To give an indication of the complexity

of the corpus, the number of tokens, i.e. the

total number of words including repetitions, is

47,782 and the total number of unique words,

i.e. not including repetions, is 12,277. The

average number of pairs of brackets in an ex-

ample is 28.03.

Secondly, there is C2, a 1000 example cor-

pus with 9467 tokens and 3731 words, which

is used in the evaluation process. It also has a

maximum sentence length of 15, with average

length 9.47 and an average number of pairs of

brackets of 27.74.

The examples in the corpora have some

small modi�cations, such that adjacent nomi-

nals in the same subtree are combined to form

a single nominal. This simpli�es the learning

process somewhat, as there are less compound

nominals, which are diÆcult in CG [22].

C1 and C2 are the unannotated versions of

the corpora. A version of each (AC1 and AC2

respectively) was also needed with the noun

and verb annotation described above. C1 and

AC1 are both used for training (i.e. build-

ing the lexicon and parsed corpus), while C2
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and AC2 are used for testing (the lexicons ex-

tracted from C1 and AC1 respectively were

used to parse them). Both of C1 and AC1

have been placed in example length order, to

allow the learner to work on simple examples

�rst. In future we want to carry out experi-

ments on unordered examples.

Finally, we use two other annotated ver-

sions of the corpus. The �rst is a version with

the bracketing of the Penn Treebank, which

is used to compare the bracketing achieved in

the learning process. The second, CGC, is a

version of the Penn Treebank corpus where

the syntactic annotation has been translated

to a CG annotation (see Watkinson and Man-

andhar [20] for details). This is used as a gold

standard for the lexical labelling, although it

is not perfect for the task, as the translation

is not entirely accurate and a number of the

categories in CGC have variables in. It does,

however, provide some guide as to the accu-

racy of lexical labelling for words in the ex-

amples, at least with respect to indicating an

improvement of one setting of Cll over an-

other.

6 Experiments

Lexicons have been built using a variety of set-

tings for Cll, summarised in Table 1. Each of

these experiments resulted in a broad cover-

age CG lexicon and a parsed corpus. The size

of the lexicon is relevant, in particular to the

size of the lexicon used in the CGC corpus,

which is 15,136. Similarly, the average ambi-

guity, i.e. the average number of categories

per word, gives an indication of the validity

of a learned corpus and the size/complexity of

the search space. CGC has an average ambi-

guity of 1.25 categories per word. The learned

lexicon was then used to parse the respective

test corpora { C2 for experiments 1 { 4 and

AC2 for experiments 5 { 6. For the annotation

learned the average crossing brackets measure

[5] and the lexical accuracy (the percentage of

correctly labelled words using CGC to de�ne

the correct labels) are also given.

Experiment Training Initial Parser

Number Corpus Lexicon Beam

1 C1 SIL 2

2 C1 LIL 2

3 C1 SIL 1

4 C1 SIL 4

5 AC1 - 2

6 AC1 - 1

Table 1: The experiments performed

Lexical accuracy gives us some understand-

ing of the tagging accuracy of the lexicon

when used with the parser, as well as an idea

of the accuracy of the corpus that has been

tagged. The crossing brackets rate gives a

good idea of structural plausibility of the lex-

icons learned and the corpora built. Both

have been used before with similar learning

systems [6, 11].

Experiments on simple corpora of examples

generated from hand-built grammars, using

an earlier version of Cll are described by

Watkinson and Manandhar [17, 18].

It seems that increasing the bootstrapping

information provided by the initial lexicon is

e�ective in improving the learning with re-

spect to lexical accuracy { again this is not

surprising, as the initial lexicon supplies infor-

mation directly involved in lexical labelling.

However, the fact that the crossing bracket

rate increases when LIL is used instead of

SIL, suggests that over-constraining the sys-

tem with an initial lexicon may reduce the


exibility required to learn the best lexicons.

Currently it would appear that fairly strong

probabilistic constraints are useful. There is

not a great deal of di�erence between beams

of 1 and 2, but 1 is consistently slightly better.

Similarly, both are better than a beam of 4.

This may suggest some future work that does

not require the lexicon selection stage, as only

the most likely parse need be considered. This

could be used to eliminate the reparsing stage,

although there would need to be some tech-
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Experiment Lexicon Average Lexical Accuracy Average CBR

Number Size Ambiguity C1 C2 C1 C2

1 12,706 1.21 44.76 47.53 5.43 4.70

2 13,851 1.24 49.54 51.89 5.61 4.86

3 12,070 1.21 45.36 47.68 5.44 4.48

4 12,044 1.21 44.56 47.26 5.96 5.32

5 13,010 1.12 35.59 35.48 5.11 4.40

6 12,903 1.11 37.11 37.22 5.19 4.38

Table 2: The results of the experiments

nique for removing the e�ects of bad parses

from the lexicon (perhaps one reparse at the

end of the learning process).

Finally the results with the di�erent corpus

annotations are interesting. The experiments

with the unannotated corpora achieve better

results with respect to lexical accuracy. How-

ever, with respect to the crossing bracket rate,

the experiments with noun and verb anno-

tated corpora give better results. This seems

to be due to the fact that using the initial lex-

icon ensures that a large number of words are

accurately labelled, but it sometimes reduces

the 
exibility too much to allow the parser

to build an accurate structure. This may in

turn be due to the lack of 
exibility in the cat-

egories that are available to the learner. The

noun and verb annotated setting on the other

hand provides the learner with a bias towards

the correct structure of the examples, hence

giving a good crossing bracket rate, but the

initial knowledge is perhaps too weak to en-

sure a good labelling.

The lexical accuracy results may appear

low, but considering that a base line accuracy

of randomly assigning categories to words

would return a value of 3.33%, they do sug-

gest a signi�cant level of learning.

7 Related Work

Wol� [21] using a similar (if rather more em-

piricist) setting also uses syntactic analysis

and compression to build grammars. How-

ever, this syntactic analysis would appear to

be very expensive and the system has not been

applied to large scale problems. The compres-

sion metric is applied with respect to the com-

pression of the corpus, rather than the com-

pression of syntactic information extracted

from the corpus. It seems unlikely that the

simple induction algorithm would generate

linguistically plausible grammars when pre-

sented with complex naturally occurring data.

Joshi and Srinivas [6] have developed a

method called supertagging that similarly at-

taches complex syntactic tags (supertags) to

words. Their most e�ective learning model

was a combination of symbolic and stochas-

tic techniques, like the approach presented

here. However, the a full lexicon is supplied

to the learner, so that the problem is reduced

to one of disambiguating between the possi-

ble supertags. The learning appears to be

somewhat supervised as it occurs over parts-

of-speech rather than over the actual words.

However, label accuracy is supplied and this

can be compared with the accuracy of our sys-

tem.

Osborne and Briscoe [11] present a some-

what supervised system for learning unusual

stochastic CGs (the atomic categories are far

more varied than standard CG) again us-

ing part-of-speech strings rather than words.

While the problem solved is simpler, this sys-

tem provides a suitable comparison for learn-

ing appropriate lexicons for parsing.

Neither Joshi and Srinivas [6] nor Osborne

and Briscoe [11] are psychologically plausible,
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but they are computationally e�ective and

they do give suitable results for comparison.

Osborne and Briscoe [11] achieve average

crossing bracket rates of around 3 using a

variety of Minimum Description Length and

Maximum Likelihood approaches. Given that

they are solving a simpler problem, the results

we present here, with a best of 4.18 seem re-

spectable.

Joshi and Srinivas [6] achieve a lexical ac-

curacy of 78%. However, given that this is

a much simpler disambiguation task, as the

system is given a full lexicon, our results are

respectable. As noted above, a random al-

gorithm applied to our problem would, on

average, return a lexical accuracy of 3.33%.

Assuming the average ambiguity of the CGC

corpus (i.e. 1.25) then if a full lexicon was

supplied, a random algorithm should achieve

a lexical accuracy of 80%. While the average

ambiguity may be higher in general, this puts

the results in perspective.

Recently there has been work on unsuper-

vised learning of syntax. A variety of ap-

proaches have used the fact that constituents

can be substituted for one another to iden-

tify constituents in groups of sentences and

then extract rules [2, 7, 16, 15, 14]. The re-

sults of these systems, when given (Clark [2]

gives a good summary), show better crossing

bracket rates (0.82{2.12) than that obtained

here, but the systems do not appear to pro-

vide complete bracketings (they have very low

recall �gures), whereas Cll provides a com-

plete parse for each example.

8 Conclusions

We have presented Cll, an e�ective lexi-

con learning and corpus parsing system that

works in both unsupervised and weakly super-

vised environments. We have also presented

a set of experiments comparing a variety of

parameters that need to be considered when

building language learning systems. These

have shown that the system is e�ective as a

�rst step and builds useful lexicons and anno-

tated corpora. Cll also shows the advantages

of using stochastic models alongside symbolic

models within language learning. Finally, we

have begun to investigate what sort of plausi-

ble linguistic knowledge may actually be use-

ful for Cll.

A large variety of further experiments could

be performed using Cll. In particular we are

investigating more complex forms of compres-

sion. It is also our intention to perform exper-

iments on the full Penn Treebank, including

examples with movement. This may require

extending the CG we are currently using.
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