
Extracting ontologies from World Wide Web via HTML tables

Minoru Yoshida1, Kentaro Torisawa2,3 and Jun’ichi Tsujii1,4

1 Department of Computer Science, Graduate school of Information Science and Technology,
2 School of Information Science, Japan Advanced Institute of Science and Technology

3 Information and Human Behavior, PRESTO, Japan Science and Technology Corporation
4CREST, JST(Japan Science and Technology Corporation)

Postal address:
Department of Computer Science, Graduate school of Information Science and Technology,

University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
Telephone: +81 3 5803 1697 Facsimile: +81 3 5802 8872

{mino, tsujii}@is.s.u-tokyo.ac.jp, torisawa@jaist.ac.jp

Summary
This paper describes a method to extract ontologies from tables in the World Wide

Web (WWW). A table can be seen as a device to describe relating objects by attribute-
value pairs. The attributes specify the important information that we need to know for
identification and utilization of the described objects. This property is the same as the
requirement on generic ontologies. So, by properly processing a wide range of tables,
we can construct ontologies. We proposed an unsupervised method for this task. The
method utilizes the EM algorithm and can be seen as an unsupervised learning method.
The effectiveness of our method is confirmed by a series of experiments.

keywords: WWW, tables, EM algorithm, ontology

1 Introduction

This paper describes a method to extract on-
tologies from tables in the World Wide Web
(WWW). A table can be seen as a device to de-
scribe relating objects by attribute-value pairs.
The attributes specify the important informa-
tion that we need to know for identification and
utilization of the described objects. For ex-
ample, we can identify each CD by its values
for the “Title”, “Composer” and “Price” at-
tributes, and can utilize the same information
for certain purposes.

This property of attributes is the same as the
requirement on generic ontologies. More pre-
cisely, ontologies, or some part of them, can be
described by attribute-value pairs as exempli-
fied in Figure 2 and those attributes express
what we need to know for identification and uti-
lization of the described class of objects. So, by
properly processing a wide range of tables, we

Title Composer Price
Sonata No. 1 Mozart 2500

Symphony No. 9 Beethoven 1800
Nocturne No. 1 J.S.Bach 1500

Figure 1: A Table Describing CDs

Yamada Taro

Yoshida HanakoName

Male

Female

A

AB

Gender

BloodType

[ATTRIBUTE]

Nakamura Ichiro

[POSSIBLE VALUE]

Figure 2: A Sample Ontology of Human

can construct ontologies.
The proposed method classifies the tables ac-

cording to the objects described by each table,

Name

Hobby

Major

Tennis

I. Tanaka

Math

Name Birthday Interest

1974. 1. 1H.Suzuki Trip

CPU Memory Price

64KBZ80 123,000

Name Hobby BloodType

AJ. Yoshida Game

Favorite

Cake

K.Nakamura Sleeping AB

Name Hobby BloodType

I.Tanaka Tennis

J.Yoshida Game A

H.Suzuki Trip

…

…

CPU

HDD

Memory

１GB

Pentium200MHz

8MB

CPU Memory

Pentium200MHz 8MB …

…

Z80 64KB

Cluster Cluster

Name

Hobby

Bloodtype

I.Tanaka
J.Yoshida
H.Suzuki

Tennis
Game
Trip

A

CPU Pentium200MHz
Z80

Memory *MB
*KB

Figure 3: Sample Extraction of Ontologies

and collects the attributes and their possible
values from the tables describing a class of ob-
jects which is illustrated in Figure 3.

Let us see the above processes more con-
cretely using the example. In this case, a set
of self-introduction tables and PC specification
tables in various format are clustered into the
two clusters. Tables in each cluster are merged
into one large table called a class table. Af-
ter that, attributes in each class table, such as
“Name” and “Hobby” attributes in a human
class table (made from self-introduction tables),
are extracted as attributes for the correspond-
ing ontology. Possible values of the attributes
like “I.Tanaka” and “Tennis” are also extracted
as the values of those attributes.

Note that there are three major problems in
doing this task. The first is that extracting
attribute-value pairs from a given table is not
a trivial task. The second is that we have to de-
velop a method to classify tables according to
the objects described by the tables. The third
is that there are much variations in the repre-
sentations of the attributes that means almost
the same. For instance, we can write “Date of
Birth” instead of “Birthday” both of which have
the same meaning. So, in order to construct
useful ontologies from tables, we need to iden-
tify the set of expressions that have the same

meaning. In this paper, we provide solutions
for tackling these problems.

Our method consists of the following three
processes:

• Table Structure Recognition (for the first
problem)

• Table Clustering (for the second problem)

• Attribute Clustering (for the third prob-
lem)

where the table structure means the set of at-
tributes and their possible values for a given ta-
ble. In order to extract attribute-value pairs
from tables in various forms, we first recog-
nize table structures of tables since they are
not given explicitly in web pages. We call this
task table structure recognition. Table clustering
classifies tables and attribute clustering finds
the attributes in the same meaning.

Our method can be seen as a learning
method.The method is unsupervised one in the
sense that no human intervention and no man-
ually tailored “table corpus” are required. The
method utilizes the EM algorithm.

1.1 Table Structure Recognition

Table structure recognition detects which part
of a given table is an attribute or a value. There
have been some researches on this task. Most
of them utilized surface features such as the
number of numeric words, the length of strings
(Hurst and Douglas, 1997) (Chen et al., 2000) or
HTML tags (Itoh et al., 1999). Although these
methods achieved significant success, we view
this task in a different perspective. Table inter-
pretation by human requires ontological knowl-
edge, as stated above. For instance, if a table
describes people, it should have attributes such
as “Name”, “Birthday” and “Hobby”. In ad-
dition, there should be strings which are likely
to be values of these attributes. We think that
these insights are based on generic ontological
knowledge. Our approach is to recover a part
of such ontological knowledge from tables about
various objects in various formats, and to use it
in table recognition. Of course, previous works

can be seen as special cases of this approach.
The utilization of surface clues such as numbers
can be regarded as an attempt to use ontolog-
ical knowledge related to numbers. However,
our approach treats larger classes of strings. As
another type of study, a machine learning ap-
proach (Ng et al., 1999) or a model-based algo-
rithm (Green and Krishnamoorthy, 1995) were
proposed. But they focused on the tables in free
texts or printed tables with visual cues such as
the thickness of lines, not on HTML tables.

In this paper, we provide the algorithm to
perform this task which doesn’t require much
prior-given knowledge. The algorithm is an un-
supervised method in the sense that it does
not require any training samples in which ta-
ble structures are given by a human. This
is achieved by utilizing the Expectation Max-
imization algorithm (Dempster et al., 1977) .
The algorithm estimates the probabilities that
a string appears as attributes (or values). After
this estimation is performed we obtain a set of
probabilities which tells us that the strings such
as “Hobby” or “Birthday” has a high proba-
bility to be an attribute, and a number or a
person’s name has a high probability to be a
value. Then, the algorithm determines a table
structure according to the estimated probability
distribution. Through a series of experiments
we show that our algorithm achieved about 80%
recognition accuracy.

1.2 Table Clustering

After obtaining table structures for many ta-
bles, our procedure gathers tables describing
objects in the same class into a single cluster.
In order to solve this problem, we define the
concept of unique attributes, which are the at-
tributes appearing particularly in some specific
tables, such as the “Hobby” attribute in the ta-
bles about people. Our algorithm estimates the
uniqueness for each attribute and uses the at-
tribute with the high uniqueness for clustering.

1.3 Attribute Clustering

Different attributes can be used with the same
meaning, such as the attributes “Birthday” and
“Day of birth” in self-introduction tables. To

Name John Mary
Gender male female

BloodType A AB
(a) A table representing human beings

Name Tel. Recommendation
Lake Restaurant 31-2456 special lunch

Cafe Bonne 12-3456 chicken curry
Metro Restaurant 56-7890 fried rice

(b)A table representing restaurants

John Richard Tom
Jude Mary Bill

(c)A list of names

Figure 4: Sample Tables

align such attributes we need a method for
attribute clustering, which classifies attributes.
We define a similarity measure between each
pair of attributes in terms of the frequency of
values appearing with each attribute and clus-
ter them based on this similarity measure. Af-
ter that, we obtain the set of table clusters each
of which is represented by a single large table
called a class table, as shown in Figure 3. Fi-
nally, each class table is mapped to the corre-
sponding ontology.

1.4 Outline

In Section 2 of this paper we describe our algo-
rithm for table structure recognition. In Section
3 we will provide our table clustering algorithm.
In Section 4 we will describe our attribute clus-
tering algorithm. In Section 5 we will show the
results of our experiments in which tables ex-
tracted from the WWW were used.

2 Table Structure Recognition

Given a set of tables, our table structure recog-
nition algorithm assigns a table structure, which
denotes the positions of attributes and those of
values, to each table in the set. For example,
for table (b) in Figure 4, the desired output is
the table structure which places the attributes
on the line of the first row.

First of all, we give definitions of tables and
table structures. We begin by assuming that
a table is a two-dimensional array of strings.
For our convenience, we represent a table by a
sequence of its items, along with the numbers
of its rows and columns. Therefore, a table T is

denoted as

T = (〈s1, s2, ..., sxy〉, x, y)

where x is the number of columns in T and y is
the number of rows in T . 〈s1, s2, ..., sxy〉 is a se-
quence of strings appearing in the table. We as-
sume that the position of a string s in a sequence
〈s1, ., s, ., sxy〉 has a one-to-one correspondence
with the position in the table. In other words,
if we specify a position in a table, we can re-
trieve the string appearing in the position from
the sequence.

We assume that each string in the table can
be classified as an attribute string or a value
string. In table (a) of Figure 4, the strings
“Name”, “Gender” and “BloodType” are at-
tribute strings. “John”, “Male”, “A”, etc. are
value strings of these attributes. Note that an
attribute string in one table can be a value
string in another table. The table structure rep-
resents the layout of attribute strings and value
strings in a table. It is a set of labels, which
are assigned to each string of the table, where a
label is a member of the set of labels {att, val}.
The att label stands for attributes and the val
label stands for values.

More formally, the table structure is defined
as the function whose argument is a table

(〈s1, s2, ..., sn〉, x, y)

and has a value of the corresponding sequence

〈(s1, l1), (s2, l2), ..., (sn, ln)〉

where li is the label that corresponds to the
string si.

We also assume that table structures are cate-
gorized into the nine types illustrated in Figure
5. Figure 6 provides examples of tables using
some of the types. When table (a) in Figure 6
has the table structure 1-h, att is assigned to the
words “Title”, “Composer” and “Price”, while
val is assigned to “Mozart”, “Beethoven”, and
so on.

Note that if we are given the size and a type
of a table, we can obtain a unique table struc-
ture. Since a table size is always given, we can

Type 0 Type 1-h

Type 3-hType 2-h Type 4-h

Type 1-v

Type 2-v Type 3-v Type 4-v

attribute strings value strings

Suffix h: the attribute words are arranged horizontally.

Suffix v: the attribute words are arranged vertically.

Figure 5: Types

[Title] [Composer] [Price]
Sonata No. 1 Mozart 2500
Symphony No. 9 Beethoven 1800
Nocturne No. 1 J.S.Bach 1500

(a) Type 1-h

[Name] Hanako [BloodType] A
[Gender] Female [Birthday] 22 Feb.
[Nationality] Japanese [Tel.] 12-3456

(b) Type 2-v

Cafe Hongo
[Item] [Price]
Coffee 300 Yen
Curry Rice 700 Yen
Toast 350 Yen

(c) Type 4-h

Figure 6: Examples of Tables with Various
Types. Bracketed Strings Represent Attributes.

regard a type as a table structure. Another im-
portant point is that the nine types in Figure 5
are corresponding to only plausible table struc-
tures, not all the possible table structures. This
has the effect of preventing our algorithm from
losing its way among various implausible table
structures. Actually, we use types instead of ta-
ble structures in the remaining of the paper for
the sake of simplicity.

2.1 Algorithm

The algorithm chooses the most plausible se-
quence of types M = 〈m1,m2, ...,mn〉 for input

sequence of tables T = 〈T1, · · · , Tn〉, according
to the estimated probabilities as follows.

M = arg max
M

P (M|T)

= arg max
M

P (M,T)

= arg max
〈mi〉ni=1∈M

∏

i

P (mi, Ti)

Then, we express the probability P (mi, Ti)
with the follwoing parameter set θ and denotes
the probability by Pθ(mi, Ti).

θ = {Pθ(m|x, y)} ∪ {Pθ(s|l)}

Pθ(m,T) = Pθ(m, {〈si〉ni=1, x, y})
= P (x, y)Pθ(m|x, y)Pθ(〈si〉ni=1|m,x, y)
≈ P (x, y)Pθ(m|x, y)Pθ(〈si〉ni=1|m)
≈ P (x, y)Pθ(m|x, y)

∏

(s,l)∈m(T)

Pθ(s|l)

Note that P (x, y) is constant because it is not
dependent on the value of M. In the last trans-
formation, we made an approximation such that
Pθ(〈si〉ni=1|m) =

∏
(s,l)∈m(T) Pθ(s|l). Roughly,

this says that Pθ(〈si〉ni=1|m) is the product of
P (s|l) for all the pairs (s, l) in m(T) where s is
a string and l is a label.

The EM algorithm improves the value of
Pθ(M,T) by repeatedly adjusting the param-
eter set θ. The algorithm outputs M which lo-
cally maximizes the value of log Pθ(M,T) as the
best sequence of types. At each iteration, the
parameters are adjusted according to the follow-
ing formulae. These formulae are easily derived
according to the standard derivation steps in
the EM algorithm:

Pθ(m|x, y) =
1

|Txy|
∑

T∈Txy

Pθ′(m|T)

Pθ(s|l) =
1

Zθ′(l)
·
∑

i,k

∑

k(m(Ti))=(s,l)

Pθ′(m|Ti) (1)

where

Pθ′(m|Ti) =
Pθ′(m,Ti)
Pθ′(Ti)

Here k(m(T)) means the kth element of the
ordered set m(T) and

∑
k(m(Ti))=(s,l) means the

summation over all possible values of m such
that the kth element of m(T) is (s, l). Zθ′(l) is
the normalizing factor such that

∑
s P (s|l) = 1.

Txy is a sequence of tables with the size of (x, y).

2.2 Other elements of the algorithm

Some further elements of our algorithm are de-
scribed in this subsection.

Final Word Let us describe our use of final
words to canonicalize each string of all tables.
We assume that all strings s in a table are noun
phrases. We remove all words from s other than
the head nouns, and thus generalize the mean-
ing of s (i.e. to avoid problems with data sparse-
ness.)

In Japanese, the final word of a noun phrase
is often the head noun. For example, “関
数名 (Function Name)” is generalized to “名
(Name)” as this is the final word of “関数名”.
This assigns “関数名” a high frequency, even if
the frequency of the appearance of this partic-
ular phrase is low. We therefore use the final
word from each string s in place of s.

Threshold We cluster the final words with a
frequency which is lower than some threshold
(currently 20). Such strings are treated as one
string.

Initial Parameter Finally let us explain how
to give the initial parameter set θ0. The only
parameters to which we manually assign values
are the P (m) for all values of m. (This P (m)
is equal to P (m|x, y) for all (x, y)). Note that
because the number of kinds of m is 9, we have
to give only 9 parameters a priori. After that,
the following formula, which is obtained by sub-
stituting Pθ0(m) for P (m|Ti) in the formula (1),
is used to estimate each P (s|l).

Pθ0(s|l) =
1

Zθ0(l)
·
∑

i,k

∑

k(m(Ti))=(s,l)

Pθ0(m)

Currently Pθ0(m) is set to 0.3 if m is a Type
0, 1-h or 1-v, and Pθ0(m) is set to 0.03 if m is
another type in the parameter θ0. These param-
eters are set to realize P (0) : P (1-h) : P (1-v) =

1 : 1 : 1 and P (0) : P (m) = 10 : 1 for another
m. This setting is based on the fact that type
2–4 tables are rare in comparison with tables of
the type 1-h, 1-v or 0.

Each Pθ0(x, y) is given as follows and not
changed in the algorithm.

Pθ0(x, y) =
|Txy|
|T |

3 Table Clustering

As mentioned before, we use unique attributes
for clustering tables. The unique attributes are
attributes peculiar to certain class of objects (or
tables describing certain class of objects.) For
instance, the attribute “Hobby” is peculiar to a
table about self-introduction and the attribute
CPU is peculiar to catalogues of personal com-
puters. We express the degree of peculiarity of
an attribute a by the function uniq(a) defined
below. Assume that we are given a set of tables
R and the set A of all the attributes appearing
in R. U(a) is a set of tables in R in which a
appears. V (a) is the set of attributes appearing
in U(a). Freq(b, a) is the frequency of attribute
b in the tables in U(a).

uniq(a) =def cooc(a) · excl(a)

where

cooc(a) =def
1

|V (a)|
∑

b∈V (a)

Freq(b, a)

excl(a) =def
1

|V (a)|
∑

b∈V (a)

Freq(b, a)
|U(b)|

Intuitively, if uniq(a) is large, U(a) is likely
to be a set of tables describing similar ob-
jects. cooc(a) expresses how consistently the at-
tributes in V (a) co-occurs with a. When V (a)
consists of only the attributes which rarely co-
occurs with a, then a is considered to appear in
R rather randomly. This means that a is not
peculiar to tables describing certain consistent
class of objects. On the other hands, excl(a)
represents the degree of exclusiveness of the at-
tributes in V (a). If attributes in V (a) appear

Name Address Hobby TEL

Price CommentAddress

Name Sex Age Hobby E-Mail

Name Price Release Maker

Name Birthday Job Hobby Comment

(Self-Intro)

(Self-Intro)

(Self-Intro)

(Goods)

(Goods)

Gathering table with “Hobby”Gathering table with “Price”

• “Hobby” and “Price” are taken as the unique at-
tributes.

• Note that only attributes of each table are indi-
cated.

Figure 7: Clustering Example

frequently in U(a) and rarely in R−U(a), then
excl(a) has a large value.

The algorithm selects an attribute a with
a large value of uniq(a) and takes U(a) as
a cluster. In the example in Figure 5, self-
introduction tables are gathered by the unique
attribute “Hobby” and goods tables are gath-
ered by the unique attribute “Price”. On the
other hand, “Comment” is assigned a low value
of uniq and not used for clustering because if
a =“Comment”, all other attributes in V (a)
(“Address”, “Birthday”, and so on) appear only
once in U(a) and frequently appears in R−U(a).

4 Attribute Clustering

Attribute clustering classifies similar attributes
into the same cluster. Attributes in the same
cluster are aligned as the same attribute in a
class table. The similarity between attributes a
and b is calculated using a simple cosine mea-
sure where each attribute is represented by a
vector whose element is the frequency of each
value appearing with that attribute.

5 Experiments

5.1 Table Structure Recognition

We implemented our algorithm and applied it to
S, a set of HTML tables gathered from WWW.
S contained 35232 tables. Most of these tables
were in Japanese.

Accuracy

0.6

0.65

0.7

0.75

0.8

Accuracy

0 1 2 3 4 5 6 7 8 9 Iteration

Figure 8: Improvement of Accuracy with Itera-
tion

After the parameters were estimated from all
over S, we estimated the accuracy with which
types were assigned to tables by randomly se-
lecting 175 tables from S and applying the al-
gorithm to them. Note that therefore accuracy
was evaluated in a closed test. The degree of
accuracy was calculated as

n

175

where n is the number of tables to which cor-
rect types were assigned. Of these 175 tables,
the number of tables with type 0, 1-h, 1-v and
others, were 76, 61, 35 and 3, respectively.

Figure 8 shows the accuracy on each iteration.
The accuracy increased from 0.66 to 0.78. Note
that this accuracy is significant if we consider
the distribution of types.

Table 1 shows the more detailed results, with
figures for recall and precision. The recall of a
type m is defined as

Nc(m)
Nh(m)

where Nh(m) denotes the number of tables as-
signed type m by a human. The precision of a
type m is defined as

Nc(m)
Nm(m)

where Nm(m) denotes the number of tables as-
signed type m by our algorithm, and Nc(m) de-
notes the number of tables assigned the type m
by both the human and our algorithm. We can
see that the recall for Type 0 was dramatically
improved by iteration. This means that iter-
ation has a good effect in terms of discarding

Iteration=0
Type Nh Correct answer Recall

0 76 32 0.42
1-h 61 52 0.85
1-v 35 31 0.89
2–4 3 0 0.00

Total 175 115 0.66
Iteration=0
Type Nm Correct answer Precision

0 41 32 0.78
1-h 69 52 0.75
1-v 64 31 0.48
2–4 1 0 0.00

Total 175 114 0.66
Iteration=10
Type Nh Correct answer Recall

0 76 54 0.71
1-h 61 53 0.87
1-v 35 28 0.80
2–4 3 1 0.33

Total 175 136 0.78
Iteration=10
Type Nm Correct answer Precision

0 68 54 0.79
1-h 60 53 0.88
1-v 44 28 0.64
2–4 3 1 0.33

Total 175 136 0.78

Table 1: Results with recall and precision

Iteration=0
Number Correct answer

Recall 15 5 0.33
Precision 7 5 0.71
F-measure 0.45
Iteration=10

Number Correct answer
Recall 15 10 0.67

Precision 20 10 0.50
F-measure 0.57

Table 2: Results for Type 2–4

two-dimensional arrays of strings which do not
contain attribute words.

Type 2–4 only applied to one table, so we
cannot properly estimate the recall and preci-
sion for Type 2–4 from Table 1. To estimate
the recall and precision for Type 2–4, we inves-
tigated results for a larger set of 4033 tables,
including 15 tables with Type 2–4. The result
is shown in Table 2. This result shows that our
algorithm can correctly assign Type 2–4 to a
limited extent, although the F-measure is less
than that for Type 1-h or Type 1-v.

Next we compared the performance of our

Cluster Objects # of Tables
趣味 (Hobby) Person(10) 811
名 前 (Person’s
Name)

Person(10) 668

住所 (Address) Building(10) 271
所在地 (Address) Building(7),

Noted Place(3)
243

氏名 (First/Last
Name)

Person(8),
Univ.-Course(1),
Record(1)

425

順位 (Rank) Ranking(10) 351
タイトル (Title) Game(5),

Movie(3),
Song(2)

623

内容 (Contents) TV-Program(7),
Lecture(1),
Rugby Game(1),
Schedule(1)

292

NAME Person(10) 159
日 時
(Date/Time)

Schedule(8),
Record(2)

253

月日 (Date) Schedule(5),
Record(5)

149

全長 (Length) Car(6), Ma-
chine(2), Pig(1),
Fishing Rod(1)

41

CPU PC(10) 95
なまえ (Person’s
Name)

Person(10) 25

資本金 (Capital
Money)

Company(10) 40

Table 3: Result of Table Clustering

algorithm with the algorithm of (Chen et al.,
2000). They reported that their algorithm fil-
tered out non-tables (i.e. Type 0 tables) with
a precision of 92.92% and a recall of 80.07% .
According to their criteria, the precision of our
result was 79.44% and the recall was 85.86%.

Although a precise comparison is not possi-
ble, it would at first appear that our method
does not perform as well as Chen’s. However,
Chen’s experiments were performed on a set of
tables selected from airline information pages.
We therefore believe that these tables were more
suitable for their method because these tables
most likely contain numbers. We therefore ex-
pect that our method can outperform Chen’s
if the performances are evaluated on a set con-
taining a greater variety of tables.

5.2 Table Clustering

Table clustering was evaluated on a set of 44691
tables, which is larger than S.

We selected clusters with the top 15 values of

|V (a)|, assuming that if |V (a)| is large it means
that tables in that cluster came from various
kinds of locations and were therefore appropri-
ate for evaluation. Thus we can avoid the clus-
ter which contains many similar tables written
by only one or a few persons. We investigated
the clustering result by checking 10 randomly-
selected objects in each cluster . Table 3 shows
the clustering result. We can observe that some
attributes, such as “Hobby”, “CPU” and “Cap-
ital Money”, which are we think appropriate as
unique attributes, were properly used for clus-
tering. On the other hand, some attributes such
as “Contents” and “Title” are ambiguous be-
cause it is hard to express the type of objects in
the cluster by one word (as “People” in “Hobby”
cluster.) Therefore there is still a room for im-
provement of clustering result by adjusting the
definition of uniq function or relying on other
clustering techniques.

5.3 Attribute Clustering

The performance of attribute clustering was
evaluated by using the resulting class tables.
The algorithm selects top 7 highest-occurring
attributes to present class tables. We call them
main attributes of each cluster and use them
for evaluation. For example, main attributes
in the “Hobby” cluster were Name, Birthday,
Address, Bloodtype, Job, Hobby and Favorite-
foods. We evaluated table merging for 3 clusters
whose unique attributes were “Hobby”, “CPU”,
“Capital Money.”

First, we evaluated the accuracy of attribute
clustering by checking if each attribute gathered
as a main attribute is plausible or not. Table 4
shows the accuracy for main attributes. Here
Nc means the number of gathered attributes
and Na means the number of correct attributes
among them. Figure 9 shows the 23 attributes
gathered as “Present Address” attribute in a
human class. Of these attributes, 16 were really
plausible as “Present Address”. In this case,
a precision was calculated as Nc/Na = 16/23.
Note that the recall was not evaluated in this
experiment. Although attributes whose values
have a standard expression such as “Bloodtype”
or “Employee” were fairly gathered, the accu-

Human Class
Attribute Na Nc Precision
Name 8 4 0.50
Birthday 27 9 0.33
Present Address 23 16 0.70
Bloodtype 15 14 0.93
Job 25 4 0.16
Hobby 1 1 1.00
Favorite Food 39 8 0.21
PC Class
Attribute Na Nc Precision
CPU 1 1 1.00
Main Memory 7 5 0.71
Cache 3 1 0.33
HDD 5 3 0.60
VideoCard 5 4 0.80
OS 3 1 0.33
CD-ROM 4 4 1.00
Company Class
Attribute Na Nc Precision
Established Date 6 5 0.83
Opening Date 5 3 0.60
President 2 1 0.50
Capital Money 1 1 1.00
Main Address 17 5 0.29
Business 2 1 0.50
of Employees 5 5 1.00

Table 4: Result of Attribute Clustering: 1

住所地, 所在地, 住所※, 住んでるとこ, 巣穴, 原産地, すん
でいるところ, 生まれた場所, 住んでいる所, すみか, 在住,
生息場所, 住処, 住んだ所, 住んでる所, 生まれ, お住まい
(PresentAddress),
誕生地と生息地, 誕生地＆生息地, 原産地＆生息地, (Birth-
place and PresentAddress),
都道府県 (Prefecture),
生年及び出生地 (Birthday and Birthplace),
出身地, (Birthplace),

Figure 9: Attributes Gathered as “Present Ad-
dress”

racy for attributes with no such standard value
expression was rather low.

Next, we randomly selected 10 objects1 for
each class table and checked if their values in
the original table appeared in the merging result
(recall), and if their values in the merging result
are correct (precision), for each main attribute
in the cluster. The result is shown in Table
5. Although currently experiments was done on
rather small set of tables, we can see that the
merging was done properly to some extent.

1All of the objects came from different tables.

Cluster Precision Recall F-measure
趣味 (Hobby) 0.98 0.79 0.87
CPU 0.90 0.82 0.86
資本金 (Capital) 0.94 0.77 0.85

Table 5: Result of Attribute Clustering: 2

6 Conclusion

In this paper, we have presented a method to
extract ontologies by integrating the tables de-
scribing objects in the same class. Our method
integrates tables by utilizing the automatically
recognized table structures on the basis of prob-
abilistic models where parameters are estimated
with no training samples. We showed that our
algorithm produced ontologies of a person class
or a PC class automatically. However, our al-
gorithm still leave room for improvement. We
must enhance each process in our algorithm, es-
pecially in table clustering and attribute clus-
tering, to improve the quality of ontologies. We
also intend to apply our method to the tables
other than Japanese ones.

References

H. H. Chen, S. C. Tsai, and J. H. Tsai. 2000. Mining
tables from large scale HTML texts. 18th Interna-
tional Conference on Computational Linguistics
(COLING), pages 166–172.

A.P. Dempster, N.M. Laird, and D.B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. J. Royal Statistical Soc., B, 39:1–
38.

E. Green and M. Krishnamoorthy. 1995. Model-
based analysis of printed tables. In Proceeding of
International Conference on Document Analysis
and Recognition, pages 214–217.

M. Hurst and S. Douglas. 1997. Layout and lan-
guage: Preliminary investigations in recognizing
the structure of tables. Fourth International Con-
ference on Document Analysis and Recognition
(ICDAR), pages 1043–1047.

F. Itoh, N. Otani, T. Ueda, and Y. Ikeda. 1999.
Two-way navigation system for the information
space and the real space using extraction and in-
tegration of attribute ontologies. Journal of the
Japanese Society for Artificial Intelligence, 14 (In
Japanese):1001–1009.

H.T. Ng, C.Y. Lim, and J.L.T. Koo. 1999. Learning
to recognize tables in free text. In Proceeding of
the 37th Annual Meeting of the Association for
Computational Linguistics (ACL 99), pages 443–
450.

